Dispersing obnoxious facilities on a graph

Alexander Grigoriev, Tim A. Hartmann, Stefan Lendl, Gerhard J. Woeginger

Research output: Book/ReportReportAcademic


We study a continuous facility location problem on a graph where all edges have unit length and where the facilities may also be positioned in the interior of the edges. The goal is to position as many facilities as possible subject to the condition that any two facilities have at least distance δ from each other. We investigate the complexity of this problem in terms of the rational parameter δ. The problem is polynomially solvable, if the numerator of δ is 1 or 2, while all other cases turn out to be NP-hard.
Original languageEnglish
Place of PublicationCornell University Library, US
PublisherCornell University - arXiv
Number of pages13
Publication statusPublished - 21 Nov 2018

Publication series


JEL classifications

  • c00 - Mathematical and Quantitative Methods: General


  • Algorithms
  • Complexity
  • Optimization
  • Graph theory
  • Facility location


Dive into the research topics of 'Dispersing obnoxious facilities on a graph'. Together they form a unique fingerprint.

Cite this