Disease detection or public opinion reflection? : Content analysis of tweets, other social media, and online newspapers during the measles outbreak in The Netherlands in 2013

L. Mollema, I.A. Harmsen, E. Broekhuizen, R. Clijnk, H. De Melker, T. Paulussen, G. Kok, R. Ruiter, E. Das

Research output: Contribution to journalArticleAcademicpeer-review

7 Citations (Scopus)

Abstract

Background: In May 2013, a measles outbreak began in the Netherlands among Orthodox Protestants who often refuse vaccination for religious reasons. Objective: Our aim was to compare the number of messages expressed on Twitter and other social media during the measles outbreak with the number of online news articles and the number of reported measles cases to answer the question if and when social media reflect public opinion patterns versus disease patterns. Methods: We analyzed measles-related tweets, other social media messages, and online newspaper articles over a 7-month period (April 15 to November 11, 2013) with regard to topic and sentiment. Thematic analysis was used to structure and analyze the topics. Results: There was a stronger correlation between the weekly number of social media messages and the weekly number of online news articles (P<.001 for both tweets and other social media messages) than between the weekly number of social media messages and the weekly number of reported measles cases (P=.003 and P=.048 for tweets and other social media messages, respectively), especially after the summer break. All data sources showed 3 large peaks, possibly triggered by announcements about the measles outbreak by the Dutch National Institute for Public Health and the Environment and statements made by well-known politicians. Most messages informed the public about the measles outbreak (ie, about the number of measles cases) (93/165, 56.4%) followed by messages about preventive measures taken to control the measles spread (47/132, 35.6%). The leading opinion expressed was frustration regarding people who do not vaccinate because of religious reasons (42/88, 48%). Conclusions: The monitoring of online (social) media might be useful for improving communication policies aiming to preserve vaccination acceptability among the general public. Data extracted from online (social) media provide insight into the opinions that are at a certain moment salient among the public, which enables public health institutes to respond immediately and appropriately to those public concerns. More research is required to develop an automatic coding system that captures content and user's characteristics that are most relevant to the diseases within the National Immunization Program and related public health events and can inform official responses.
Original languageEnglish
Article numbere128
JournalJournal of Medical Internet Research
Volume17
Issue number5
DOIs
Publication statusPublished - 1 Jan 2015

Cite this

@article{cfa254ecaa514f6aa7f268fcdbfd3cfd,
title = "Disease detection or public opinion reflection? : Content analysis of tweets, other social media, and online newspapers during the measles outbreak in The Netherlands in 2013",
abstract = "Background: In May 2013, a measles outbreak began in the Netherlands among Orthodox Protestants who often refuse vaccination for religious reasons. Objective: Our aim was to compare the number of messages expressed on Twitter and other social media during the measles outbreak with the number of online news articles and the number of reported measles cases to answer the question if and when social media reflect public opinion patterns versus disease patterns. Methods: We analyzed measles-related tweets, other social media messages, and online newspaper articles over a 7-month period (April 15 to November 11, 2013) with regard to topic and sentiment. Thematic analysis was used to structure and analyze the topics. Results: There was a stronger correlation between the weekly number of social media messages and the weekly number of online news articles (P<.001 for both tweets and other social media messages) than between the weekly number of social media messages and the weekly number of reported measles cases (P=.003 and P=.048 for tweets and other social media messages, respectively), especially after the summer break. All data sources showed 3 large peaks, possibly triggered by announcements about the measles outbreak by the Dutch National Institute for Public Health and the Environment and statements made by well-known politicians. Most messages informed the public about the measles outbreak (ie, about the number of measles cases) (93/165, 56.4{\%}) followed by messages about preventive measures taken to control the measles spread (47/132, 35.6{\%}). The leading opinion expressed was frustration regarding people who do not vaccinate because of religious reasons (42/88, 48{\%}). Conclusions: The monitoring of online (social) media might be useful for improving communication policies aiming to preserve vaccination acceptability among the general public. Data extracted from online (social) media provide insight into the opinions that are at a certain moment salient among the public, which enables public health institutes to respond immediately and appropriately to those public concerns. More research is required to develop an automatic coding system that captures content and user's characteristics that are most relevant to the diseases within the National Immunization Program and related public health events and can inform official responses.",
author = "L. Mollema and I.A. Harmsen and E. Broekhuizen and R. Clijnk and {De Melker}, H. and T. Paulussen and G. Kok and R. Ruiter and E. Das",
year = "2015",
month = "1",
day = "1",
doi = "10.2196/jmir.3863",
language = "English",
volume = "17",
journal = "Journal of Medical Internet Research",
issn = "1438-8871",
publisher = "JMIR Publications Inc.",
number = "5",

}

Disease detection or public opinion reflection? : Content analysis of tweets, other social media, and online newspapers during the measles outbreak in The Netherlands in 2013. / Mollema, L.; Harmsen, I.A.; Broekhuizen, E.; Clijnk, R.; De Melker, H.; Paulussen, T.; Kok, G.; Ruiter, R.; Das, E.

In: Journal of Medical Internet Research, Vol. 17, No. 5, e128, 01.01.2015.

Research output: Contribution to journalArticleAcademicpeer-review

TY - JOUR

T1 - Disease detection or public opinion reflection? : Content analysis of tweets, other social media, and online newspapers during the measles outbreak in The Netherlands in 2013

AU - Mollema, L.

AU - Harmsen, I.A.

AU - Broekhuizen, E.

AU - Clijnk, R.

AU - De Melker, H.

AU - Paulussen, T.

AU - Kok, G.

AU - Ruiter, R.

AU - Das, E.

PY - 2015/1/1

Y1 - 2015/1/1

N2 - Background: In May 2013, a measles outbreak began in the Netherlands among Orthodox Protestants who often refuse vaccination for religious reasons. Objective: Our aim was to compare the number of messages expressed on Twitter and other social media during the measles outbreak with the number of online news articles and the number of reported measles cases to answer the question if and when social media reflect public opinion patterns versus disease patterns. Methods: We analyzed measles-related tweets, other social media messages, and online newspaper articles over a 7-month period (April 15 to November 11, 2013) with regard to topic and sentiment. Thematic analysis was used to structure and analyze the topics. Results: There was a stronger correlation between the weekly number of social media messages and the weekly number of online news articles (P<.001 for both tweets and other social media messages) than between the weekly number of social media messages and the weekly number of reported measles cases (P=.003 and P=.048 for tweets and other social media messages, respectively), especially after the summer break. All data sources showed 3 large peaks, possibly triggered by announcements about the measles outbreak by the Dutch National Institute for Public Health and the Environment and statements made by well-known politicians. Most messages informed the public about the measles outbreak (ie, about the number of measles cases) (93/165, 56.4%) followed by messages about preventive measures taken to control the measles spread (47/132, 35.6%). The leading opinion expressed was frustration regarding people who do not vaccinate because of religious reasons (42/88, 48%). Conclusions: The monitoring of online (social) media might be useful for improving communication policies aiming to preserve vaccination acceptability among the general public. Data extracted from online (social) media provide insight into the opinions that are at a certain moment salient among the public, which enables public health institutes to respond immediately and appropriately to those public concerns. More research is required to develop an automatic coding system that captures content and user's characteristics that are most relevant to the diseases within the National Immunization Program and related public health events and can inform official responses.

AB - Background: In May 2013, a measles outbreak began in the Netherlands among Orthodox Protestants who often refuse vaccination for religious reasons. Objective: Our aim was to compare the number of messages expressed on Twitter and other social media during the measles outbreak with the number of online news articles and the number of reported measles cases to answer the question if and when social media reflect public opinion patterns versus disease patterns. Methods: We analyzed measles-related tweets, other social media messages, and online newspaper articles over a 7-month period (April 15 to November 11, 2013) with regard to topic and sentiment. Thematic analysis was used to structure and analyze the topics. Results: There was a stronger correlation between the weekly number of social media messages and the weekly number of online news articles (P<.001 for both tweets and other social media messages) than between the weekly number of social media messages and the weekly number of reported measles cases (P=.003 and P=.048 for tweets and other social media messages, respectively), especially after the summer break. All data sources showed 3 large peaks, possibly triggered by announcements about the measles outbreak by the Dutch National Institute for Public Health and the Environment and statements made by well-known politicians. Most messages informed the public about the measles outbreak (ie, about the number of measles cases) (93/165, 56.4%) followed by messages about preventive measures taken to control the measles spread (47/132, 35.6%). The leading opinion expressed was frustration regarding people who do not vaccinate because of religious reasons (42/88, 48%). Conclusions: The monitoring of online (social) media might be useful for improving communication policies aiming to preserve vaccination acceptability among the general public. Data extracted from online (social) media provide insight into the opinions that are at a certain moment salient among the public, which enables public health institutes to respond immediately and appropriately to those public concerns. More research is required to develop an automatic coding system that captures content and user's characteristics that are most relevant to the diseases within the National Immunization Program and related public health events and can inform official responses.

U2 - 10.2196/jmir.3863

DO - 10.2196/jmir.3863

M3 - Article

VL - 17

JO - Journal of Medical Internet Research

JF - Journal of Medical Internet Research

SN - 1438-8871

IS - 5

M1 - e128

ER -