TY - JOUR
T1 - Differential Translocation of the Fatty Acid Transporter, FAT/CD36, and the Glucose Transporter, GLUT4, Coordinates Changes in Cardiac Substrate Metabolism During Ischemia and Reperfusion
AU - Heather, Lisa C.
AU - Pates, Katharine M.
AU - Atherton, Helen J.
AU - Cole, Mark A.
AU - Ball, Daniel R.
AU - Evans, Rhys D.
AU - Glatz, Jan F.
AU - Luiken, Joost J.
AU - Griffin, Julian L.
AU - Clarke, Kieran
PY - 2013/9
Y1 - 2013/9
N2 - Background Fatty acid and glucose transporters translocate between the sarcolemma and intracellular compartments to regulate substrate metabolism acutely. We hypothesised that during ischemia fatty acid translocase (FAT/CD36) would translocate away from the sarcolemma to limit fatty acid uptake when fatty acid oxidation is inhibited. Methods and Results Wistar rat hearts were perfused during preischemia, low-flow ischemia, and reperfusion, using H-3-substrates for measurement of metabolic rates, followed by metabolomic analysis and subcellular fractionation. During ischemia, there was a 32% decrease in sarcolemmal FAT/CD36 accompanied by a 95% decrease in fatty acid oxidation rates, with no change in intramyocardial lipids. Concomitantly, the sarcolemmal content of the glucose transporter, GLUT4, increased by 90% during ischemia, associated with an 86% increase in glycolytic rates, 45% decrease in glycogen content, and a 3-fold increase in phosphorylated AMP-activated protein kinase. Following reperfusion, decreased sarcolemmal FAT/CD36 persisted, but fatty acid oxidation rates returned to preischemic levels, resulting in a 35% decrease in myocardial triglyceride content. Elevated sarcolemmal GLUT4 persisted during reperfusion; in contrast, glycolytic rates decreased to 30% of preischemic rates, accompanied by a 5-fold increase in intracellular citrate levels and restoration of glycogen content. Conclusions During ischemia, FAT/CD36 moved away from the sarcolemma as GLUT4 moved toward the sarcolemma, associated with a shift from fatty acid oxidation to glycolysis, while intramyocardial lipid accumulation was prevented. This relocation was maintained during reperfusion, which was associated with replenishing glycogen stores as a priority, occurring at the expense of glycolysis and mediated by an increase in citrate levels.
AB - Background Fatty acid and glucose transporters translocate between the sarcolemma and intracellular compartments to regulate substrate metabolism acutely. We hypothesised that during ischemia fatty acid translocase (FAT/CD36) would translocate away from the sarcolemma to limit fatty acid uptake when fatty acid oxidation is inhibited. Methods and Results Wistar rat hearts were perfused during preischemia, low-flow ischemia, and reperfusion, using H-3-substrates for measurement of metabolic rates, followed by metabolomic analysis and subcellular fractionation. During ischemia, there was a 32% decrease in sarcolemmal FAT/CD36 accompanied by a 95% decrease in fatty acid oxidation rates, with no change in intramyocardial lipids. Concomitantly, the sarcolemmal content of the glucose transporter, GLUT4, increased by 90% during ischemia, associated with an 86% increase in glycolytic rates, 45% decrease in glycogen content, and a 3-fold increase in phosphorylated AMP-activated protein kinase. Following reperfusion, decreased sarcolemmal FAT/CD36 persisted, but fatty acid oxidation rates returned to preischemic levels, resulting in a 35% decrease in myocardial triglyceride content. Elevated sarcolemmal GLUT4 persisted during reperfusion; in contrast, glycolytic rates decreased to 30% of preischemic rates, accompanied by a 5-fold increase in intracellular citrate levels and restoration of glycogen content. Conclusions During ischemia, FAT/CD36 moved away from the sarcolemma as GLUT4 moved toward the sarcolemma, associated with a shift from fatty acid oxidation to glycolysis, while intramyocardial lipid accumulation was prevented. This relocation was maintained during reperfusion, which was associated with replenishing glycogen stores as a priority, occurring at the expense of glycolysis and mediated by an increase in citrate levels.
KW - acute metabolic changes
KW - fatty acid metabolism
KW - glucose metabolism
KW - ischemia reperfusion
U2 - 10.1161/CIRCHEARTFAILURE.112.000342
DO - 10.1161/CIRCHEARTFAILURE.112.000342
M3 - Article
C2 - 23940308
SN - 1941-3289
VL - 6
SP - 1058
EP - 1066
JO - Circulation-Heart Failure
JF - Circulation-Heart Failure
IS - 5
ER -