TY - JOUR
T1 - Differential Role for Activating FcγRIII in Neointima Formation After Arterial Injury and Diet-Induced Chronic Atherosclerosis in Apolipoprotein E-Deficient Mice
AU - Asare, Yaw
AU - Koehncke, Janine
AU - Selle, Jaco
AU - Simsekyilmaz, Sakine
AU - Jankowski, Joachim
AU - Shagdarsuren, Gansuvd
AU - Gessner, Johannes E.
AU - Bernhagen, Juergen
AU - Shagdarsuren, Erdenechimeg
N1 - Funding Information:
We thank R. Soltan, Y. Kong, and M. Garbe for excellent technical assistance. Funding. This work was supported by the Else-Kr?ner-Fresenius-Stiftung (2011_A88) to ES, by the Deutsche Forschungsgemeinschaft (DFG) grant GU1221/3-1 to ES, SFB1123-A3 to JB, and SFB1123-B3 to YA, and by DFG under Germany?s Excellence Strategy within the framework of the Munich Cluster for Systems Neurology (EXC 2145 SyNergy ? ID 390857198) to JB. YA also received funding from the F?FoLe program of Ludwig Maximilian University of Munich (LMU) Munich (F?FoLe 921) and the Friedrich Baur Stiftung. JJ was supported by grants from Deutsche Forschungsgemeinschaft (DFG) (SFB TRR 219; C-04, S-03).
Publisher Copyright:
© Copyright © 2020 Asare, Koehncke, Selle, Simsekyilmaz, Jankowski, Shagdarsuren, Gessner, Bernhagen and Shagdarsuren.
PY - 2020/6/17
Y1 - 2020/6/17
N2 - Atherogenesis and arterial remodeling following mechanical injury are driven by inflammation and mononuclear cell infiltration. The binding of immune complexes (ICs) to immunoglobulin (Ig)-Fc gamma receptors (Fc gamma Rs) on most innate and adaptive immune cells induces a variety of inflammatory responses that promote atherogenesis. Here, we studied the role of Fc gamma RIII in neointima formation after arterial injury in atherosclerosis-prone mice and compared the outcome and mechanism to that of Fc gamma RIII in diet-induced "chronic" atherosclerosis.Fc gamma rIII(-/-)/Apoe(-/-)and controlApoe(-/-)mice were subjected to wire-induced endothelial denudation of the carotid artery while on high-fat diet (HFD).Fc gamma rIIIdeficiency mitigated neointimal plaque formation and lesional macrophage accumulation, and enhanced neointimal vascular smooth muscle cell (VSMC) numbers. This went along with a reduced expression of tumor necrosis factor-alpha (TNF-alpha), monocyte chemoattractant protein-1 (MCP-1/CCL2), and vascular cell adhesion molecule-1 (VCAM-1) in the neointimal lesions. Interestingly, in a chronic model of diet-induced atherosclerosis, we unraveled a dichotomic role of Fc gamma RIII in an early versus advanced stage of the disease. WhileFc gamma rIIIdeficiency conferred atheroprotection in the early stage, it promoted atherosclerosis in advanced stages. To this end,Fc gamma rIIIdeficiency attenuated pro-inflammatory responses in early atherosclerosis but promoted these events in advanced stages. Analysis of the mechanism(s) underlying the athero-promoting effect ofFc gamma rIIIdeficiency in late-stage atherosclerosis revealed increased serum levels of anti-oxidized-LDL immunoglobulins IgG2c and IgG2b. This was paralleled by enhanced lesional accumulation of IgGs without affecting levels of complement-activated products C5a or C5ar1, Fc gamma RII, and Fc gamma RIV. Moreover,Fc gamma rIII-deficient macrophages expressed moreFc gamma rII,Tnf-alpha, andIl-1 beta mRNA when exposed to IgG1 or oxLDL-IgG1 ICsin vitro, and peripheral CD4+ and CD8+ T-cell levels were altered. Collectively, our data suggest that deficiency of activatingFc gamma RIIIlimits neointima formation after arterial injury in atherosclerosis-prone mice as well as early stage chronic atherosclerosis, but augments late-stage atherosclerosis suggesting a dual role of Fc gamma RIII in atherogenic inflammation.
AB - Atherogenesis and arterial remodeling following mechanical injury are driven by inflammation and mononuclear cell infiltration. The binding of immune complexes (ICs) to immunoglobulin (Ig)-Fc gamma receptors (Fc gamma Rs) on most innate and adaptive immune cells induces a variety of inflammatory responses that promote atherogenesis. Here, we studied the role of Fc gamma RIII in neointima formation after arterial injury in atherosclerosis-prone mice and compared the outcome and mechanism to that of Fc gamma RIII in diet-induced "chronic" atherosclerosis.Fc gamma rIII(-/-)/Apoe(-/-)and controlApoe(-/-)mice were subjected to wire-induced endothelial denudation of the carotid artery while on high-fat diet (HFD).Fc gamma rIIIdeficiency mitigated neointimal plaque formation and lesional macrophage accumulation, and enhanced neointimal vascular smooth muscle cell (VSMC) numbers. This went along with a reduced expression of tumor necrosis factor-alpha (TNF-alpha), monocyte chemoattractant protein-1 (MCP-1/CCL2), and vascular cell adhesion molecule-1 (VCAM-1) in the neointimal lesions. Interestingly, in a chronic model of diet-induced atherosclerosis, we unraveled a dichotomic role of Fc gamma RIII in an early versus advanced stage of the disease. WhileFc gamma rIIIdeficiency conferred atheroprotection in the early stage, it promoted atherosclerosis in advanced stages. To this end,Fc gamma rIIIdeficiency attenuated pro-inflammatory responses in early atherosclerosis but promoted these events in advanced stages. Analysis of the mechanism(s) underlying the athero-promoting effect ofFc gamma rIIIdeficiency in late-stage atherosclerosis revealed increased serum levels of anti-oxidized-LDL immunoglobulins IgG2c and IgG2b. This was paralleled by enhanced lesional accumulation of IgGs without affecting levels of complement-activated products C5a or C5ar1, Fc gamma RII, and Fc gamma RIV. Moreover,Fc gamma rIII-deficient macrophages expressed moreFc gamma rII,Tnf-alpha, andIl-1 beta mRNA when exposed to IgG1 or oxLDL-IgG1 ICsin vitro, and peripheral CD4+ and CD8+ T-cell levels were altered. Collectively, our data suggest that deficiency of activatingFc gamma RIIIlimits neointima formation after arterial injury in atherosclerosis-prone mice as well as early stage chronic atherosclerosis, but augments late-stage atherosclerosis suggesting a dual role of Fc gamma RIII in atherogenic inflammation.
KW - Fc gamma receptors
KW - atherosclerosis
KW - inflammation
KW - neointima formation
KW - hyperlipidemia
KW - cytokine
KW - complement
KW - LOW-DENSITY-LIPOPROTEIN
KW - IMMUNE-COMPLEXES
KW - IGG
KW - RECEPTORS
KW - PROGRESSION
KW - INHIBITION
KW - MECHANISMS
KW - PROTECTION
KW - ANTIBODIES
KW - LESIONS
U2 - 10.3389/fphys.2020.00673
DO - 10.3389/fphys.2020.00673
M3 - Article
C2 - 32625118
SN - 1664-042X
VL - 11
JO - Frontiers in physiology
JF - Frontiers in physiology
M1 - 673
ER -