TY - JOUR
T1 - Differential expression of epigenetic modifiers in early and late cardiotoxic heart failure reveals DNA methylation as a key regulator of cardiotoxicity
AU - Robinson, E.L.
AU - Ameri, P.
AU - Delrue, L.
AU - Vanderheyden, M.
AU - Bartunek, J.
AU - Altieri, P.
AU - Heymans, S.
AU - Heggermont, W.A.
PY - 2023/3/9
Y1 - 2023/3/9
N2 - BackgroundAnthracycline-induced cardiotoxicity is a well-known serious clinical entity. However, detailed mechanistic insights on how short-term administration leads to late and long-lasting cardiotoxicity, are still largely undiscovered. We hypothesize that chemotherapy provokes a memory effect at the level of epigenomic DNA modifications which subsequently lead to cardiotoxicity even years after cessation of chemotherapy.MethodsWe explored the temporal evolution of epigenetic modifiers in early and late cardiotoxicity due to anthracyclines by means of RNA-sequencing of human endomyocardial left ventricular biopsies and mass spectrometry of genomic DNA. Based on these findings, validation of differentially regulated genes was obtained by performing RT-qPCR. Finally, a proof-of-concept in vitro mechanistic study was performed to dissect some of the mechanistic aspects of epigenetic memory in anthracycline-induced cardiotoxicity.ResultsCorrelation of gene expression between late and early onset cardiotoxicity revealed an R-2 value of 0.98, demonstrating a total of 369 differentially expressed genes (DEGs, FDR < 0.05). of which 72% (n = 266) were upregulated, and 28% of genes, (n = 103) downregulated in later as compared to earlier onset cardiotoxicity. Gene ontology analysis showed significant enrichment of genes involved in methyl-CpG DNA binding, chromatin remodeling and regulation of transcription and positive regulation of apoptosis. Differential mRNA expression of genes involved in DNA methylation metabolism were confirmed by RT-qPCR in endomyocardial biopsies. In a larger biopsy cohort, it was shown that Tet2 was more abundantly expressed in cardiotoxicity biopsies vs. control biopsies and vs. non-ischemic cardiomyopathy patients. Moreover, an in vitro study was performed: following short-term doxorubicin treatment, H9c2 cells were cultured and passaged once they reached a confluency of 70%-80%. When compared to vehicle-only treated cells, in doxorubicin-treated cells, three weeks after short term treatment, Nppa, Nppb, Tet1/2 and other genes involved in active DNA demethylation were markedly upregulated. These alterations coincided with a loss of DNA methylation and a gain in hydroxymethylation, reflecting the epigenetic changes seen in the endomyocardial biopsies.ConclusionsShort-term administration of anthracyclines provokes long-lasting epigenetic modifications in cardiomyocytes both in vivo and in vitro, which explain in part the time lapse between the use of chemotherapy and the development of cardiotoxicity and, eventually, heart failure.
AB - BackgroundAnthracycline-induced cardiotoxicity is a well-known serious clinical entity. However, detailed mechanistic insights on how short-term administration leads to late and long-lasting cardiotoxicity, are still largely undiscovered. We hypothesize that chemotherapy provokes a memory effect at the level of epigenomic DNA modifications which subsequently lead to cardiotoxicity even years after cessation of chemotherapy.MethodsWe explored the temporal evolution of epigenetic modifiers in early and late cardiotoxicity due to anthracyclines by means of RNA-sequencing of human endomyocardial left ventricular biopsies and mass spectrometry of genomic DNA. Based on these findings, validation of differentially regulated genes was obtained by performing RT-qPCR. Finally, a proof-of-concept in vitro mechanistic study was performed to dissect some of the mechanistic aspects of epigenetic memory in anthracycline-induced cardiotoxicity.ResultsCorrelation of gene expression between late and early onset cardiotoxicity revealed an R-2 value of 0.98, demonstrating a total of 369 differentially expressed genes (DEGs, FDR < 0.05). of which 72% (n = 266) were upregulated, and 28% of genes, (n = 103) downregulated in later as compared to earlier onset cardiotoxicity. Gene ontology analysis showed significant enrichment of genes involved in methyl-CpG DNA binding, chromatin remodeling and regulation of transcription and positive regulation of apoptosis. Differential mRNA expression of genes involved in DNA methylation metabolism were confirmed by RT-qPCR in endomyocardial biopsies. In a larger biopsy cohort, it was shown that Tet2 was more abundantly expressed in cardiotoxicity biopsies vs. control biopsies and vs. non-ischemic cardiomyopathy patients. Moreover, an in vitro study was performed: following short-term doxorubicin treatment, H9c2 cells were cultured and passaged once they reached a confluency of 70%-80%. When compared to vehicle-only treated cells, in doxorubicin-treated cells, three weeks after short term treatment, Nppa, Nppb, Tet1/2 and other genes involved in active DNA demethylation were markedly upregulated. These alterations coincided with a loss of DNA methylation and a gain in hydroxymethylation, reflecting the epigenetic changes seen in the endomyocardial biopsies.ConclusionsShort-term administration of anthracyclines provokes long-lasting epigenetic modifications in cardiomyocytes both in vivo and in vitro, which explain in part the time lapse between the use of chemotherapy and the development of cardiotoxicity and, eventually, heart failure.
KW - chemotherapy-induced heart failure
KW - anthracycline cardiotoxicity
KW - cardio-oncology
KW - epigenetic memory
KW - DNA methylation
KW - DNA demethylation
KW - ANTHRACYCLINE CARDIOTOXICITY
KW - DOXORUBICIN
KW - DYSFUNCTION
KW - MECHANISMS
KW - UPDATE
KW - MEMORY
U2 - 10.3389/fcvm.2023.884174
DO - 10.3389/fcvm.2023.884174
M3 - Article
C2 - 36970338
SN - 2297-055X
VL - 10
JO - Frontiers in cardiovascular medicine
JF - Frontiers in cardiovascular medicine
M1 - 884174
ER -