Development and validation of deep learning classifiers to detect Epstein-Barr virus and microsatellite instability status in gastric cancer: a retrospective multicentre cohort study
H.S. Muti, L.R. Heij, G. Keller, M. Kohlruss, R. Langer, B. Dislich, J.H. Cheong, Y.W. Kim, H. Kim, M.C. Kook, D. Cunningham, W.H. Allum, R.E. Langley, M.G. Nankivell, P. Quirke, J.D. Hayden, N.P. West, A.J. Irvine, T. Yoshikawa, T. OshimaR. Huss, B. Grosser, F. Roviello, A. d'Ignazio, A. Quaas, H. Alakus, X.X. Tan, A.T. Pearson, T. Luedde, M.P. Ebert, D. Jager, C. Trautwein, N.T. Gaisa, H.I. Grabsch, J.N. Kather*
Research output: Contribution to journal › Article › Academic › peer-review
Fingerprint
Dive into the research topics of 'Development and validation of deep learning classifiers to detect Epstein-Barr virus and microsatellite instability status in gastric cancer: a retrospective multicentre cohort study'. Together they form a unique fingerprint.