Development and validation of deep learning classifiers to detect Epstein-Barr virus and microsatellite instability status in gastric cancer: a retrospective multicentre cohort study

H.S. Muti, L.R. Heij, G. Keller, M. Kohlruss, R. Langer, B. Dislich, J.H. Cheong, Y.W. Kim, H. Kim, M.C. Kook, D. Cunningham, W.H. Allum, R.E. Langley, M.G. Nankivell, P. Quirke, J.D. Hayden, N.P. West, A.J. Irvine, T. Yoshikawa, T. OshimaR. Huss, B. Grosser, F. Roviello, A. d'Ignazio, A. Quaas, H. Alakus, X.X. Tan, A.T. Pearson, T. Luedde, M.P. Ebert, D. Jager, C. Trautwein, N.T. Gaisa, H.I. Grabsch, J.N. Kather*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

Fingerprint

Dive into the research topics of 'Development and validation of deep learning classifiers to detect Epstein-Barr virus and microsatellite instability status in gastric cancer: a retrospective multicentre cohort study'. Together they form a unique fingerprint.

Keyphrases

INIS

Biochemistry, Genetics and Molecular Biology

Earth and Planetary Sciences