Data-Adaptive Estimation of Time-Varying Spectral Densities

Anne van Delft*, Michael Eichler

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

This article introduces a data-adaptive nonparametric approach for the estimation of time-varying spectral densities from nonstationary time series. Time-varying spectral densities are commonly estimated by local kernel smoothing. The performance of these nonparametric estimators, however, depends crucially on the smoothing bandwidths that need to be specified in both time and frequency direction. As an alternative and extension to traditional bandwidth selection methods, we propose an iterative algorithm for constructing localized smoothing kernels data-adaptively. The main idea, inspired by the concept of propagation-separation, is to determine for a point in the time-frequency plane the largest local vicinity over which smoothing is justified by the data. By shaping the smoothing kernels nonparametrically, our method not only avoids the problem of bandwidth selection in the strict sense but also becomes more flexible. It not only adapts to changing curvature in smoothly varying spectra but also adjusts for structural breaks in the time-varying spectrum. Supplementary materials, including the R package tvspecAdapt containing an implementation of the routine, are available online.
Original languageEnglish
Pages (from-to)244-255
Number of pages12
JournalJournal of Computational and Graphical Statistics
Volume28
Issue number2
DOIs
Publication statusPublished - 3 Apr 2019

Keywords

  • Data-adaptive kernel estimation
  • Local stationary processes

Cite this

@article{3fb6370d5337484996a41fc97dca4fea,
title = "Data-Adaptive Estimation of Time-Varying Spectral Densities",
abstract = "This article introduces a data-adaptive nonparametric approach for the estimation of time-varying spectral densities from nonstationary time series. Time-varying spectral densities are commonly estimated by local kernel smoothing. The performance of these nonparametric estimators, however, depends crucially on the smoothing bandwidths that need to be specified in both time and frequency direction. As an alternative and extension to traditional bandwidth selection methods, we propose an iterative algorithm for constructing localized smoothing kernels data-adaptively. The main idea, inspired by the concept of propagation-separation, is to determine for a point in the time-frequency plane the largest local vicinity over which smoothing is justified by the data. By shaping the smoothing kernels nonparametrically, our method not only avoids the problem of bandwidth selection in the strict sense but also becomes more flexible. It not only adapts to changing curvature in smoothly varying spectra but also adjusts for structural breaks in the time-varying spectrum. Supplementary materials, including the R package tvspecAdapt containing an implementation of the routine, are available online.",
keywords = "Data-adaptive kernel estimation, Local stationary processes",
author = "{van Delft}, Anne and Michael Eichler",
note = "data source:",
year = "2019",
month = "4",
day = "3",
doi = "10.1080/10618600.2018.1512866",
language = "English",
volume = "28",
pages = "244--255",
journal = "Journal of Computational and Graphical Statistics",
issn = "1061-8600",
publisher = "Taylor and Francis",
number = "2",

}

Data-Adaptive Estimation of Time-Varying Spectral Densities. / van Delft, Anne; Eichler, Michael.

In: Journal of Computational and Graphical Statistics, Vol. 28, No. 2, 03.04.2019, p. 244-255.

Research output: Contribution to journalArticleAcademicpeer-review

TY - JOUR

T1 - Data-Adaptive Estimation of Time-Varying Spectral Densities

AU - van Delft, Anne

AU - Eichler, Michael

N1 - data source:

PY - 2019/4/3

Y1 - 2019/4/3

N2 - This article introduces a data-adaptive nonparametric approach for the estimation of time-varying spectral densities from nonstationary time series. Time-varying spectral densities are commonly estimated by local kernel smoothing. The performance of these nonparametric estimators, however, depends crucially on the smoothing bandwidths that need to be specified in both time and frequency direction. As an alternative and extension to traditional bandwidth selection methods, we propose an iterative algorithm for constructing localized smoothing kernels data-adaptively. The main idea, inspired by the concept of propagation-separation, is to determine for a point in the time-frequency plane the largest local vicinity over which smoothing is justified by the data. By shaping the smoothing kernels nonparametrically, our method not only avoids the problem of bandwidth selection in the strict sense but also becomes more flexible. It not only adapts to changing curvature in smoothly varying spectra but also adjusts for structural breaks in the time-varying spectrum. Supplementary materials, including the R package tvspecAdapt containing an implementation of the routine, are available online.

AB - This article introduces a data-adaptive nonparametric approach for the estimation of time-varying spectral densities from nonstationary time series. Time-varying spectral densities are commonly estimated by local kernel smoothing. The performance of these nonparametric estimators, however, depends crucially on the smoothing bandwidths that need to be specified in both time and frequency direction. As an alternative and extension to traditional bandwidth selection methods, we propose an iterative algorithm for constructing localized smoothing kernels data-adaptively. The main idea, inspired by the concept of propagation-separation, is to determine for a point in the time-frequency plane the largest local vicinity over which smoothing is justified by the data. By shaping the smoothing kernels nonparametrically, our method not only avoids the problem of bandwidth selection in the strict sense but also becomes more flexible. It not only adapts to changing curvature in smoothly varying spectra but also adjusts for structural breaks in the time-varying spectrum. Supplementary materials, including the R package tvspecAdapt containing an implementation of the routine, are available online.

KW - Data-adaptive kernel estimation

KW - Local stationary processes

U2 - 10.1080/10618600.2018.1512866

DO - 10.1080/10618600.2018.1512866

M3 - Article

VL - 28

SP - 244

EP - 255

JO - Journal of Computational and Graphical Statistics

JF - Journal of Computational and Graphical Statistics

SN - 1061-8600

IS - 2

ER -