Crowdsourcing digital health measures to predict Parkinson’s disease severity: the Parkinson’s Disease Digital Biomarker DREAM Challenge

Solveig K. Sieberts*, Jennifer Schaff, Marlena Duda, Bálint Ármin Pataki, Ming Sun, Phil Snyder, Jean-francois Daneault, Federico Parisi, Gianluca Costante, Udi Rubin, Peter Banda, Yooree Chae, Elias Chaibub neto, E. Ray Dorsey, Zafer Aydın, Aipeng Chen, Laura L. Elo, Carlos Espino, Enrico Glaab, Ethan GoanFatemeh Noushin Golabchi, Yasin Görmez, Maria K. Jaakkola, Jitendra Jonnagaddala, Riku Klén, Dongmei Li, Christian Mcdaniel, Dimitri Perrin, Thanneer M. Perumal, Nastaran Mohammadian Rad, Erin Rainaldi, Stefano Sapienza, Patrick Schwab, Nikolai Shokhirev, Mikko S. Venäläinen, Gloria Vergara-Diaz, Yuqian Zhang, Avner Abrami, Aditya Adhikary, Carla Agurto, Sherry Bhalla, Halil Bilgin, Vittorio Caggiano, Jun Cheng, Eden Deng, Qiwei Gan, Rajan Girsa, Zhi Han, Stephen Heisig, Kun Huang, Samad Jahandideh, Wolfgang Kopp, Christoph F. Kurz, Gregor Lichtner, Raquel Norel, G. P. S. Raghava, Tavpritesh Sethi, Nicholas Shawen, Vaibhav Tripathi, Matthew Tsai, Tongxin Wang, Yi Wu, Jie Zhang, Xinyu Zhang, Yuanjia Wang, Yuanfang Guan, Daniela Brunner, Paolo Bonato, Lara M. Mangravite, Larsson Omberg*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

Consumer wearables and sensors are a rich source of data about patients' daily disease and symptom burden, particularly in the case of movement disorders like Parkinson's disease (PD). However, interpreting these complex data into so-called digital biomarkers requires complicated analytical approaches, and validating these biomarkers requires sufficient data and unbiased evaluation methods. Here we describe the use of crowdsourcing to specifically evaluate and benchmark features derived from accelerometer and gyroscope data in two different datasets to predict the presence of PD and severity of three PD symptoms: tremor, dyskinesia, and bradykinesia. Forty teams from around the world submitted features, and achieved drastically improved predictive performance for PD status (best AUROC = 0.87), as well as tremor- (best AUPR = 0.75), dyskinesia- (best AUPR = 0.48) and bradykinesia-severity (best AUPR = 0.95).
Original languageEnglish
Number of pages12
Journalnpj Digital Medicine
Volume4
Issue number1
DOIs
Publication statusPublished - 19 Mar 2021
Externally publishedYes

Fingerprint

Dive into the research topics of 'Crowdsourcing digital health measures to predict Parkinson’s disease severity: the Parkinson’s Disease Digital Biomarker DREAM Challenge'. Together they form a unique fingerprint.

Cite this