Cross-database evaluation of EEG based epileptic seizures detection driven by adaptive median feature baseline correction

S. Raghu, Natarajan Sriraam*, Erik D. Gommer, Danny M. W. Hilkman, Yasin Temel, Shyam Vasudeva Rao, Alangar Satyaranjandas Hegde, Pieter L. Kubben

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

187 Downloads (Pure)

Abstract

Objective: In long-term electroencephalogram (EEG) signals, automated classification of epileptic seizures is desirable in diagnosing epilepsy patients, as it otherwise depends on visual inspection. To the best of the author's knowledge, existing studies have validated their algorithms using cross-validation on the same database and less number of attempts have been made to extend their work on other databases to test the generalization capability of the developed algorithms. In this study, we present the algorithm for cross-database evaluation for classification of epileptic seizures using five EEG databases collected from different centers. The cross-database framework helps when sufficient epileptic seizures EEG data are not available to build automated seizure detection model.

Methods: Two features, namely successive decomposition index and matrix determinant were extracted at a segmentation length of 4 s (50% overlap). Then, adaptive median feature baseline correction (AMFBC) was applied to overcome the inter-patient and inter-database variation in the feature distribution. The classification was performed using a support vector machine classifier with leave-one-database-out cross-validation. Different classification scenarios were considered using AM-FBC, smoothing of the train and test data, and post-processing of the classifier output.

Results: Simulation results revealed the highest area under the curve-sensitivity-specificity-false detections (per hour) of 1-1-1-0.15, 0.89-0.99-0.82-2.5, 0.99-0.73-1-1, 0.95-0.97-0.85-1.7, 0.99-0.99-0.9 2-1.1 using the Ramaiah Medical College and Hospitals, Children's Hospital Boston-Massachusetts Institute of Technology, Temple University Hospital, Maastricht University Medical Centre, and University of Bonn databases respectively.

Conclusions: We observe that the AM-FBC plays a significant role in improving seizure detection results by overcoming inter-database variation of feature distribution.

Significance: To the best of the author's knowledge, this is the first study reporting on the cross-database evaluation of classification of epileptic seizures and proven to be better generalization capability when evaluated using five databases and can contribute to accurate and robust detection of epileptic seizures in real-time. (C) 2020 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

Original languageEnglish
Pages (from-to)1567-1578
Number of pages12
JournalClinical Neurophysiology
Volume131
Issue number7
DOIs
Publication statusPublished - Jul 2020

Keywords

  • Adaptive median feature baseline correction
  • Cross-database
  • Epileptic seizures
  • Matrix determinant
  • Successive decomposition index
  • Support vector machine
  • SIGNAL CLASSIFICATION
  • WAVELET TRANSFORM
  • LOG ENERGY
  • SVM
  • NORMALIZATION
  • RECOGNITION
  • ENTROPIES
  • NETWORKS
  • RECORDS
  • SYSTEM

Fingerprint

Dive into the research topics of 'Cross-database evaluation of EEG based epileptic seizures detection driven by adaptive median feature baseline correction'. Together they form a unique fingerprint.

Cite this