Cross-cohort generalizability of deep and conventional machine learning for MRI-based diagnosis and prediction of Alzheimer's disease

E.E. Bron*, S. Klein, J.M. Papma, L.C. Jiskoot, V. Venkatraghavan, J. Linders, P. Aalten, P.P. De Deyn, G.J. Biessels, J.A.H.R. Claassen, H.A.M. Middelkoop, M. Smits, W.J. Niessen, J.C. van Swieten, W.M. van der Flier, I.H.G.B. Ramakers, A. van der Lugt

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

Fingerprint

Dive into the research topics of 'Cross-cohort generalizability of deep and conventional machine learning for MRI-based diagnosis and prediction of Alzheimer's disease'. Together they form a unique fingerprint.

Keyphrases

INIS

Neuroscience

Biochemistry, Genetics and Molecular Biology