Computational Radiomics System to Decode the Radiographic Phenotype

Joost J. M. van Griethuysen, Andriy Fedorov, Chintan Parmar, Ahmed Hosny, Nicole Aucoin, Vivek Narayan, Regina G. H. Beets-Tan, Jean-Christophe Fillion-Robin, Steve Pieper, Hugo J. W. L. Aerts*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

1742 Citations (Web of Science)
190 Downloads (Pure)

Abstract

Radiomics aims to quantify phenotypic characteristics on medical imaging through the use of automated algorithms. Radiomic artificial intelligence (AI) technology, either based on engineered hard-coded algorithms or deep learning methods, can be used to develop noninvasive imaging-based biomarkers. However, lack of standardized algorithm definitions and image processing severely hampers reproducibility and comparability of results. To address this issue, we developed PyRadiomics, a flexible open-source platform capable of extracting a large panel of engineered features from medical images. PyRadiomics is implemented in Python and can be used standalone or using 3D Slicer. Here, we discuss the workflow and architecture of PyRadiomics and demonstrate its application in characterizing lung lesions. Source code, documentation, and examples are publicly available at www.radiomics.io. With this platform, we aim to establish a reference standard for radiomic analyses, provide a tested and maintained resource, and to grow the community of radiomic developers addressing critical needs in cancer research. (C) 2017 AACR.

Original languageEnglish
Pages (from-to)E104-E107
Number of pages4
JournalCancer Research
Volume77
Issue number21
DOIs
Publication statusPublished - 1 Nov 2017

Keywords

  • TEXTURE ANALYSIS
  • F-18-FDG PET
  • HETEROGENEITY

Cite this