Combined burden and functional impact tests for cancer driver discovery using DriverPower

Shimin Shuai*, Federico Abascal, Samirkumar B. Amin, Gary D. Bader, Pratiti Bandopadhayay, Jonathan Barenboim, Rameen Beroukhim, Johanna Bertl, Keith A. Boroevich, Søren Brunak, Peter J. Campbell, Joana Carlevaro-Fita, Dimple Chakravarty, Calvin Wing Yiu Chan, Ken Chen, Jung Kyoon Choi, Jordi Deu-Pons, Priyanka Dhingra, Klev Diamanti, Lars FeuerbachJ. Lynn Fink, Nuno A. Fonseca, Joan Frigola, Carlo Gambacorti-Passerini, Dale W. Garsed, Mark Gerstein, Gad Getz, Qianyun Guo, Ivo G. Gut, David Haan, Mark P. Hamilton, Nicholas J. Haradhvala, Arif O. Harmanci, Mohamed Helmy, Carl Herrmann, Julian M. Hess, Asger Hobolth, Ermin Hodzic, Chen Hong, Henrik Hornshøj, Keren Isaev, Jose M.G. Izarzugaza, Rory Johnson, Todd A. Johnson, Malene Juul, Randi Istrup Juul, Andre Kahles, Abdullah Kahraman, Manolis Kellis, Ekta Khurana, PCAWG Consortium, PCAWG Drivers and Functional Interpretation Working Group, David Townend, Lincoln D. Stein*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

The discovery of driver mutations is one of the key motivations for cancer genome sequencing. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2658 cancers across 38 tumour types, we describe DriverPower, a software package that uses mutational burden and functional impact evidence to identify driver mutations in coding and non-coding sites within cancer whole genomes. Using a total of 1373 genomic features derived from public sources, DriverPower’s background mutation model explains up to 93% of the regional variance in the mutation rate across multiple tumour types. By incorporating functional impact scores, we are able to further increase the accuracy of driver discovery. Testing across a collection of 2583 cancer genomes from the PCAWG project, DriverPower identifies 217 coding and 95 non-coding driver candidates. Comparing to six published methods used by the PCAWG Drivers and Functional Interpretation Working Group, DriverPower has the highest F1 score for both coding and non-coding driver discovery. This demonstrates that DriverPower is an effective framework for computational driver discovery.
Original languageEnglish
Article number734
Number of pages12
JournalNature Communications
Volume11
Issue number1
DOIs
Publication statusPublished - 1 Dec 2020

Fingerprint

Dive into the research topics of 'Combined burden and functional impact tests for cancer driver discovery using DriverPower'. Together they form a unique fingerprint.
  • Author Correction: Combined burden and functional impact tests for cancer driver discovery using DriverPower

    Shuai, S., Abascal, F., Amin, S. B., Bader, G. D., Bandopadhayay, P., Barenboim, J., Beroukhim, R., Bertl, J., Boroevich, K. A., Brunak, S., Campbell, P. J., Carlevaro-Fita, J., Chakravarty, D., Chan, C. W. Y., Chen, K., Choi, J. K., Deu-Pons, J., Dhingra, P., Diamanti, K. & Feuerbach, L. & 34 others, Fink, J. L., Fonseca, N. A., Frigola, J., Gambacorti-Passerini, C., Garsed, D. W., Gerstein, M., Getz, G., Guo, Q., Gut, I. G., Haan, D., Hamilton, M. P., Haradhvala, N. J., Harmanci, A. O., Helmy, M., Herrmann, C., Hess, J. M., Hobolth, A., Hodzic, E., Hong, C., Hornshøj, H., Isaev, K., Izarzugaza, J. M. G., Johnson, R., Johnson, T. A., Juul, M., Juul, R. I., Kahles, A., Kahraman, A., Kellis, M., Khurana, E., PCAWG Consortium, PCAWG Drivers and Functional Interpretation Working Group, Townend, D. & Stein, L. D., 8 Dec 2022, In: Nature Communications. 13, 1, 1 p., 7571.

    Research output: Contribution to journalErratum / corrigendum / retractionsAcademic

    Open Access

Cite this