TY - JOUR
T1 - Circulating miR-29a, Among Other Up-Regulated MicroRNAs, Is the Only Biomarker for Both Hypertrophy and Fibrosis in Patients With Hypertrophic Cardiomyopathy
AU - Roncarati, Roberta
AU - Anselmi, Chiara Viviani
AU - Losi, Maria Angela
AU - Papa, Laura
AU - Cavarretta, Elena
AU - Martins, Paula Da Costa
AU - Contaldi, Carla
AU - Jotti, Gloria Saccani
AU - Franzone, Anna
AU - Galastri, Laura
AU - Latronico, Michael V. G.
AU - Imbriaco, Massimo
AU - Esposito, Giovanni
AU - De Windt, Leon
AU - Betocchi, Sandro
AU - Condorelli, Gianluigi
PY - 2014/3/11
Y1 - 2014/3/11
N2 - Objectives The purpose of this paper was to determine whether microRNAs (miRNAs) involved in myocardial remodeling were differentially expressed in the blood of hypertrophic cardiomyopathy (HCM) patients, and whether circulating miRNAs correlated with the degree of left ventricular hypertrophy and fibrosis. Background miRNAs-small, noncoding ribonucleic acids (RNAs) that regulate gene expression by inhibiting RNA translation-modulate cellular function. Myocardial miRNAs modulate processes such as cardiomyocyte (CM) hypertrophy, excitation-contraction coupling, and apoptosis; non-CM-specific miRNAs regulate myocardial vascularization and fibrosis. Recently, the possibility that circulating miRNAs may be biomarkers of cardiovascular disease has been raised. Methods Forty-one HCM patients were characterized with conventional transthoracic echocardiography and cardiac magnetic resonance. Peripheral plasma levels of 21 miRNAs were assessed by quantitative real-time polymerase chain reaction and were compared with levels in a control group of 41 age-and sex-matched blood donors. Results Twelve miRNAs (miR-27a, -199a-5p, -26a, -145, -133a, -143, -199a-3p, -126-3p, -29a, -155, -30a, and -21) were significantly increased in HCM plasma. However, only 3 miRNAs (miR-199a-5p, -27a, and -29a) correlated with hypertrophy; more importantly, only miR-29a correlated also with fibrosis. Conclusions Our data suggest that cardiac remodeling associated with HCM determines a significant release of miRNAs into the bloodstream: the circulating levels of both cardiac-and non-cardiac-specific miRNAs are significantly increased in the plasma of HCM patients. However, correlation with left ventricular hypertrophy parameters holds true for only a few miRNAs (i.e., miR-199a-5p, -27a, and -29a), whereas only miR-29a is significantly associated with both hypertrophy and fibrosis, identifying it as a potential biomarker for myocardial remodeling assessment in HCM.
AB - Objectives The purpose of this paper was to determine whether microRNAs (miRNAs) involved in myocardial remodeling were differentially expressed in the blood of hypertrophic cardiomyopathy (HCM) patients, and whether circulating miRNAs correlated with the degree of left ventricular hypertrophy and fibrosis. Background miRNAs-small, noncoding ribonucleic acids (RNAs) that regulate gene expression by inhibiting RNA translation-modulate cellular function. Myocardial miRNAs modulate processes such as cardiomyocyte (CM) hypertrophy, excitation-contraction coupling, and apoptosis; non-CM-specific miRNAs regulate myocardial vascularization and fibrosis. Recently, the possibility that circulating miRNAs may be biomarkers of cardiovascular disease has been raised. Methods Forty-one HCM patients were characterized with conventional transthoracic echocardiography and cardiac magnetic resonance. Peripheral plasma levels of 21 miRNAs were assessed by quantitative real-time polymerase chain reaction and were compared with levels in a control group of 41 age-and sex-matched blood donors. Results Twelve miRNAs (miR-27a, -199a-5p, -26a, -145, -133a, -143, -199a-3p, -126-3p, -29a, -155, -30a, and -21) were significantly increased in HCM plasma. However, only 3 miRNAs (miR-199a-5p, -27a, and -29a) correlated with hypertrophy; more importantly, only miR-29a correlated also with fibrosis. Conclusions Our data suggest that cardiac remodeling associated with HCM determines a significant release of miRNAs into the bloodstream: the circulating levels of both cardiac-and non-cardiac-specific miRNAs are significantly increased in the plasma of HCM patients. However, correlation with left ventricular hypertrophy parameters holds true for only a few miRNAs (i.e., miR-199a-5p, -27a, and -29a), whereas only miR-29a is significantly associated with both hypertrophy and fibrosis, identifying it as a potential biomarker for myocardial remodeling assessment in HCM.
KW - circulating microRNAs
KW - fibrosis
KW - hypertrophic cardiomyopathy
KW - myocardial remodeling
U2 - 10.1016/j.jacc.2013.09.041
DO - 10.1016/j.jacc.2013.09.041
M3 - Article
C2 - 24161319
SN - 0735-1097
VL - 63
SP - 920
EP - 927
JO - Journal of the American College of Cardiology
JF - Journal of the American College of Cardiology
IS - 9
ER -