Chemokine interactome mapping enables tailored intervention in acute and chronic inflammation

Philipp von Hundelshausen, Stijn M. Agten, Veit Eckardt, Xavier Blanchet, Martin M. Schmitt, Hans Ippel, Carlos Neideck, Kiril Bidzhekov, Julian Leberzammer, Kanin Wichapong, Alexander Faussner, Maik Drechsler, Jochen Grommes, Johanna P. van Geffen, He Li, Almudena Ortega-Gomez, Remco T. A. Megens, Ronald Naumann, Ingrid Dijkgraaf, Gerry A. F. NicolaesYvonne Doering, Oliver Soehnlein, Esther Lutgens, Johan W. M. Heemskerk, Rory R. Koenen, Kevin H. Mayo, Tilman M. Hackeng, Christian Weber*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

172 Downloads (Pure)

Abstract

Chemokines orchestrate leukocyte trafficking and function in health and disease. Heterophilic interactions between chemokines in a given microenvironment may amplify, inhibit, or modulate their activity; however, a systematic evaluation of the chemokine interactome has not been performed. We used immunoligand blotting and surface plasmon resonance to obtain a comprehensive map of chemokine-chemokine interactions and to confirm their specificity. Structure-function analyses revealed that chemokine activity can be enhanced by CC-type heterodimers but inhibited by CXC-type heterodimers. Functional synergism was achieved through receptor heteromerization induced by CCL5-CCL17 or receptor retention at the cell surface via auxiliary proteoglycan binding of CCL5-CXCL4. In contrast, inhibitory activity relied on conformational changes (in CXCL12), affecting receptor signaling. Obligate CC-type heterodimers showed high efficacy and potency and drove acute lung injury and atherosclerosis, processes abrogated by specific CCL5-derived peptide inhibitors or knock-in of an interaction-deficient CXCL4 variant. Atheroprotective effects of CCL17 deficiency were phenocopied by a CCL5-derived peptide disrupting CCL5-CCL17 heterodimers, whereas a CCL5 alpha-helix peptide mimicked inhibitory effects on CXCL12-driven platelet aggregation. Thus, formation of specific chemokine heterodimers differentially dictates functional activity and can be exploited for therapeutic targeting.

Original languageEnglish
Article numbereaah6650
Number of pages14
JournalScience Translational Medicine
Volume9
Issue number384
DOIs
Publication statusPublished - 5 Apr 2017

Keywords

  • NATIVE CHEMICAL LIGATION
  • INSULIN-DEGRADING ENZYME
  • GLYCOSAMINOGLYCAN BINDING
  • SIGNALING PATHWAYS
  • THROMBUS FORMATION
  • RECEPTOR CXCR4
  • ATHEROSCLEROSIS
  • DIMER
  • PLATELET-FACTOR-4
  • CELLS

Cite this