Abstract
Purpose: To evaluate a cardiovascular magnetic resonance imaging (MRI) technique which allows the longitudinal analysis of cardiovascular remodeling in a rodent femoral arteriovenous fistula (AVF) model by means of a clinical scanner. Materials and Methods: Eight rats underwent femoral AVF surgery and four rats served as controls. Vascular and cardiac morphology as well as cardiac function was assessed from Week 3 to 12 using contrast-enhanced, time-resolved magnetic resonance angiography (MRA) and cardiac MRI (cine gradient-echo sequence) at 3 T in one imaging session. Results: Arteriovenous surgery resulted in progressive venous dilation and a subsequent cardiac adaptation. This procedure led to downstream vasodilation of the iliac vein and inferior vena cava of 179% and 188%, respectively (3 weeks). To accommodate the increased returning blood volume, cardiac output (CO) increased significantly (P=.014; 6 weeks). This was caused by increased end-diastolic volume (EDV), stroke volume (SV) and heart rate (HR) consistent with an increased volume load. A continuous increase in heart weight peaked at 12 weeks. This increase combined with a distinct end-diastolic left ventricular dilation implied eccentric hypertrophy. Conclusion: Small rodent MRI is feasible and clearly depicts fistula maturation and cardiac alterations. This technique proved to be a valuable tool for longitudinal in vivo monitoring in this model, which strongly resembles clinical findings in hemodialysis patients.
Original language | English |
---|---|
Pages (from-to) | 57-63 |
Journal | Magnetic Resonance Imaging |
Volume | 29 |
Issue number | 1 |
DOIs | |
Publication status | Published - Jan 2011 |
Keywords
- Arteriovenous fistula
- Animal model
- Cardiovascular MRI