Cardio-respiratory fitness estimation from heart rate and body movement in daily life

Alberto G. Bonomi*, Gill A. Ten Hoor, Helma M De Morree, Guy Plasqui, Francesco Sartor

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

208 Downloads (Pure)

Abstract

Low cardiorespiratory fitness (CRF) increases risk of all-cause mortality and cardiovascular events. Periodic CRF assessment can have an important preventive function. The objective of this study was to develop a protocol-free method to estimate CRF in daily life based on heart rate (HR) and body acceleration measurements. Acceleration and HR data were collected from 37 subjects (men = 49%) while they performed a standardized laboratory activity protocol (sitting, walking, running, cycling) and during a 5-day free-living monitoring period. CRF was determined by oxygen uptake ((V)over dotO(2max)) during maximal exercise testing. A doubly labeled water-validated equation was used to predict total energy expenditure (TEE) from acceleration data. A fitness index was defined as the ratio between TEE and HR (TEE-pulse). Activity recognition techniques were used to process acceleration features and classify sedentary, ambulatory, and other activity types. Regression equations based on TEE-pulse data from each activity type were developed to predict (V)over dotO(2max). TEE-pulse measured within each activity type of the laboratory protocol was highly correlated with (V)over dotO(2max) (r from 0.74-0.91). Averaging the outcome of each activity-type specific equation based on TEE-pulse from the laboratory data led to accurate estimates of (V)over dotO(2max) [root mean square error (RMSE): 300 mL O-2/min, or 10%]. The difference between laboratory and free-living determined TEE-pulse was 3.7 +/- 11% (r = 0.85). The prediction method preserved the prediction accuracy when applied to free-living data (RMSE: 367 mL O-2/min, or 12%). Measurements of body acceleration and HR can be used to predict (V)over dotO(2max) in daily life. Activity-specific prediction equations are needed to achieve highly accurate estimates of CRF.

NEW & NOTEWORTHY This is among the very few studies validating, in free-living conditions, a method to estimate cardiorespiratory fitness using heart rate and body acceleration data. A novel parameter called TEE-pulse, which was defined as the ratio between accelerometer-determined energy expenditure and heart rate, was highly correlated with maximal oxygen uptake ((V)over dotO(2max)). Activity classification and the use of activity-selective prediction equations outperformed previously published methods for estimating (V)over dotO(2max) from heart rate and acceleration data.

Original languageEnglish
Pages (from-to)493-500
Number of pages8
JournalJournal of Applied Physiology
Volume128
Issue number3
Early online date30 Jan 2020
DOIs
Publication statusPublished - Mar 2020

Keywords

  • (V)over dotO(2max)
  • ACCELEROMETRY
  • AEROBIC POWER
  • CRITERIA
  • EXERCISE
  • INTENSITY
  • LIVING ENERGY-EXPENDITURE
  • MAXIMAL OXYGEN-UPTAKE
  • PHYSICAL-ACTIVITY
  • activity classification
  • energy expenditure
  • maximal aerobic power

Fingerprint

Dive into the research topics of 'Cardio-respiratory fitness estimation from heart rate and body movement in daily life'. Together they form a unique fingerprint.

Cite this