TY - JOUR
T1 - Brain Heterogeneity in Schizophrenia and Its Association With Polygenic Risk
AU - Alnaes, Dag
AU - Kaufmann, Tobias
AU - van der Meer, Dennis
AU - Cordova-Palomera, Aldo
AU - Rokicki, Jaroslav
AU - Moberget, Torgeir
AU - Bettella, Francesco
AU - Agartz, Ingrid
AU - Barch, Deanna M.
AU - Bertolino, Alessandro
AU - Brandt, Christine L.
AU - Cervenka, Simon
AU - Djurovic, Srdjan
AU - Nhat Trung Doan, null
AU - Eisenacher, Sarah
AU - Fatouros-Bergman, Helena
AU - Flyckt, Lena
AU - Di Giorgio, Annabella
AU - Haatveit, Beathe
AU - Jonsson, Erik G.
AU - Kirsch, Peter
AU - Lund, Martina J.
AU - Meyer-Lindenberg, Andreas
AU - Pergola, Giulio
AU - Schwarz, Emanuel
AU - Smeland, Olav B.
AU - Quarto, Tiziana
AU - Zink, Mathias
AU - Andreassen, Ole A.
AU - Westlye, Lars T.
AU - Farde, Lars
AU - Collste, Karin
AU - Victorsson, Pauliina
AU - Engberg, Goran
AU - Erhardt, Sophie
AU - Malmqvist, Anna
AU - Hedberg, Mikael
AU - Orhan, Funda
AU - Sellgren, Carl M.
AU - Schwieler, Lilly
AU - Piehl, Fredrik
AU - Karolinska Schizophrenia Project Consortium
N1 - Funding Information:
Funding/Support: This study was supported by
Funding Information:
reported being a stockholder of Hoffmann-La Roche, Ltd; receiving consulting fees from Biogen; and receiving lecture fees from Otsuka, Janssen, and Lundbeck. Dr Cervenka reported receiving grant support from AstraZeneca as a coinvestigator and participating in a speaker meeting organized by Otsuka. Dr Zink reported speaker and travel grants from Otsuka, Servier, Lundbeck, Roche, Ferrer, and Trommsdorff. No other disclosures were reported.
Funding Information:
grants 213837, 223273, 226971, 229129, 204966/ F20, and 249795 from the Research Council of Norway; grants 2014097, 2015073, 2016083, and 2017112 from the South-Eastern Norway Regional Health Authority; KG Jebsen Stiftelsen; grant 602450 (IMAGEMEND) from the European Commission Seventh Framework Programme; grants 2006-2992, 2006-986, K2007-62X-15077-04-1, 2008-2167, 2008-7573, K2010-62X-15078-07-2, K2012-61X-15078-09-3, 14266-01A,02-03, 2017-949, and 523-2014-3467 from the Swedish Research Council; and grants KI
Publisher Copyright:
© 2019 American Medical Association. All rights reserved.
PY - 2019/7
Y1 - 2019/7
N2 - ImportanceBetween-individual variability in brain structure is determined by gene-environment interactions, possibly reflecting differential sensitivity to environmental and genetic perturbations. Magnetic resonance imaging (MRI) studies have revealed thinner cortices and smaller subcortical volumes in patients with schizophrenia. However, group-level comparisons may mask considerable within-group heterogeneity, which has largely remained unnoticed in the literature. ObjectivesTo compare brain structural variability between individuals with schizophrenia and healthy controls and to test whether respective variability reflects the polygenic risk score (PRS) for schizophrenia in an independent sample of healthy controls. Design, Setting, and ParticipantsThis case-control and polygenic risk analysis compared MRI-derived cortical thickness and subcortical volumes between healthy controls and patients with schizophrenia across 16 cohorts and tested for associations between PRS and MRI features in a control cohort from the UK Biobank. Data were collected from October 27, 2004, through April 12, 2018, and analyzed from December 3, 2017, through August 1, 2018. Main Outcomes and MeasuresMean and dispersion parameters were estimated using double generalized linear models. Vertex-wise analysis was used to assess cortical thickness, and regions-of-interest analyses were used to assess total cortical volume, total surface area, and white matter, subcortical, and hippocampal subfield volumes. Follow-up analyses included within-sample analysis, test of robustness of the PRS threshold, population covariates, outlier removal, and control for image quality. ResultsA comparison of 1151 patients with schizophrenia (mean [SD] age,33.8[10.6] years; 68.6% male [n=790] and 31.4% female [n=361]) with 2010 healthy controls (mean [SD] age,32.6[10.4] years; 56.0% male [n=1126] and 44.0% female [n=884]) revealed higher heterogeneity in schizophrenia for cortical thickness and area (t = 3.34), cortical (t=3.24) and ventricle (t range, 3.15-5.78) volumes, and hippocampal subfields (t range, 2.32-3.55). In the UK Biobank sample of 12 490 participants (mean [SD] age,55.9 [7.5] years; 48.2% male [n=6025] and 51.8% female [n=6465]), higher PRS was associated with thinner frontal and temporal cortices and smaller left CA2/3 (t=-3.00) but was not significantly associated with dispersion. Conclusions and RelevanceThis study suggests that schizophrenia is associated with substantial brain structural heterogeneity beyond the mean differences. These findings may reflect higher sensitivity to environmental and genetic perturbations in patients, supporting the heterogeneous nature of schizophrenia. A higher PRS was associated with thinner frontotemporal cortices and smaller hippocampal subfield volume, but not heterogeneity. This finding suggests that brain variability in schizophrenia results from interactions between environmental and genetic factors that are not captured by the PRS. Factors contributing to heterogeneity in frontotemporal cortices and hippocampus are key to furthering our understanding of how genetic and environmental factors shape brain biology in schizophrenia.
AB - ImportanceBetween-individual variability in brain structure is determined by gene-environment interactions, possibly reflecting differential sensitivity to environmental and genetic perturbations. Magnetic resonance imaging (MRI) studies have revealed thinner cortices and smaller subcortical volumes in patients with schizophrenia. However, group-level comparisons may mask considerable within-group heterogeneity, which has largely remained unnoticed in the literature. ObjectivesTo compare brain structural variability between individuals with schizophrenia and healthy controls and to test whether respective variability reflects the polygenic risk score (PRS) for schizophrenia in an independent sample of healthy controls. Design, Setting, and ParticipantsThis case-control and polygenic risk analysis compared MRI-derived cortical thickness and subcortical volumes between healthy controls and patients with schizophrenia across 16 cohorts and tested for associations between PRS and MRI features in a control cohort from the UK Biobank. Data were collected from October 27, 2004, through April 12, 2018, and analyzed from December 3, 2017, through August 1, 2018. Main Outcomes and MeasuresMean and dispersion parameters were estimated using double generalized linear models. Vertex-wise analysis was used to assess cortical thickness, and regions-of-interest analyses were used to assess total cortical volume, total surface area, and white matter, subcortical, and hippocampal subfield volumes. Follow-up analyses included within-sample analysis, test of robustness of the PRS threshold, population covariates, outlier removal, and control for image quality. ResultsA comparison of 1151 patients with schizophrenia (mean [SD] age,33.8[10.6] years; 68.6% male [n=790] and 31.4% female [n=361]) with 2010 healthy controls (mean [SD] age,32.6[10.4] years; 56.0% male [n=1126] and 44.0% female [n=884]) revealed higher heterogeneity in schizophrenia for cortical thickness and area (t = 3.34), cortical (t=3.24) and ventricle (t range, 3.15-5.78) volumes, and hippocampal subfields (t range, 2.32-3.55). In the UK Biobank sample of 12 490 participants (mean [SD] age,55.9 [7.5] years; 48.2% male [n=6025] and 51.8% female [n=6465]), higher PRS was associated with thinner frontal and temporal cortices and smaller left CA2/3 (t=-3.00) but was not significantly associated with dispersion. Conclusions and RelevanceThis study suggests that schizophrenia is associated with substantial brain structural heterogeneity beyond the mean differences. These findings may reflect higher sensitivity to environmental and genetic perturbations in patients, supporting the heterogeneous nature of schizophrenia. A higher PRS was associated with thinner frontotemporal cortices and smaller hippocampal subfield volume, but not heterogeneity. This finding suggests that brain variability in schizophrenia results from interactions between environmental and genetic factors that are not captured by the PRS. Factors contributing to heterogeneity in frontotemporal cortices and hippocampus are key to furthering our understanding of how genetic and environmental factors shape brain biology in schizophrenia.
KW - SURFACE-BASED ANALYSIS
KW - PERMUTATION INFERENCE
KW - SEGMENTATION
KW - SCORE
KW - ACTIVATION
KW - DISORDER
KW - SUBTYPES
KW - VOLUME
KW - MRI
U2 - 10.1001/jamapsychiatry.2019.0257
DO - 10.1001/jamapsychiatry.2019.0257
M3 - Article
C2 - 30969333
SN - 2168-622X
VL - 76
SP - 739
EP - 748
JO - JAMA Psychiatry
JF - JAMA Psychiatry
IS - 7
ER -