TY - JOUR
T1 - Bone marrow-specific caspase-1/11 deficiency inhibits atherosclerosis development in Ldlr(-/-) mice
AU - Hendrikx, Tim
AU - Jeurissen, Mike L.J.
AU - van Gorp, Patrick J.
AU - Gijbels, M.J.
AU - Walenbergh, Sofie M.A.
AU - Houben, Tom
AU - van Gorp, R.
AU - Pottgens, C.C.
AU - Stienstra, R.
AU - Netea, M.G.
AU - Hofker, M.
AU - Donners, M.M.
AU - Shiri-Sverdlov, Ronit
PY - 2015/1/1
Y1 - 2015/1/1
N2 - Recent investigations have suggested that inflammasome activation plays an important role during atherosclerosis. Upon activation, the inflammasome induces processing and release of pro-inflammatory cytokines interleukin 1beta (IL-1beta) and interleukin 18 (IL-18) via activation of caspase-1/11. Previously, it was shown that complete caspase-1 deficiency is protective against atherosclerosis development. However, while macrophages are the main inflammatory cells involved in atherosclerosis, the exact role of macrophage-specific caspase-1/11 activation during development of cardiovascular disease has never been investigated. We hypothesized that hematopoietic caspase-1/11 deficiency leads to reduced atherosclerosis development. To investigate the specific contribution of hematopoietic caspase-1/11 activation to atherosclerosis development, Ldlr(-/-) mice received a transplant (tp) of wild-type (WT) or caspase-1/11(-/-) bone marrow, to create WT-tp mice and caspase-1/11(-/-) -tp mice, and fed a high-fat, high-cholesterol diet for 12 weeks. Our results showed an increase in anti-inflammatory blood leukocytes in caspase-1/11(-/-) -tp mice compared with WT-tp mice, as indicated by a decreased level of Ly6C(high) monocytes and an increased level of Ly6C(low) monocytes. In line with our hypothesis, hematopoietic deletion of caspase-1/11 resulted in a strong reduction in atherosclerotic plaque size. Furthermore, necrotic core content was dramatically decreased in caspase-1/11(-/-) -tp mice. Our data indicate that hematopoietic caspase-1/11 activation is involved in vascular inflammation and atherosclerosis, and plays an important role in cardiovascular disease progression.
AB - Recent investigations have suggested that inflammasome activation plays an important role during atherosclerosis. Upon activation, the inflammasome induces processing and release of pro-inflammatory cytokines interleukin 1beta (IL-1beta) and interleukin 18 (IL-18) via activation of caspase-1/11. Previously, it was shown that complete caspase-1 deficiency is protective against atherosclerosis development. However, while macrophages are the main inflammatory cells involved in atherosclerosis, the exact role of macrophage-specific caspase-1/11 activation during development of cardiovascular disease has never been investigated. We hypothesized that hematopoietic caspase-1/11 deficiency leads to reduced atherosclerosis development. To investigate the specific contribution of hematopoietic caspase-1/11 activation to atherosclerosis development, Ldlr(-/-) mice received a transplant (tp) of wild-type (WT) or caspase-1/11(-/-) bone marrow, to create WT-tp mice and caspase-1/11(-/-) -tp mice, and fed a high-fat, high-cholesterol diet for 12 weeks. Our results showed an increase in anti-inflammatory blood leukocytes in caspase-1/11(-/-) -tp mice compared with WT-tp mice, as indicated by a decreased level of Ly6C(high) monocytes and an increased level of Ly6C(low) monocytes. In line with our hypothesis, hematopoietic deletion of caspase-1/11 resulted in a strong reduction in atherosclerotic plaque size. Furthermore, necrotic core content was dramatically decreased in caspase-1/11(-/-) -tp mice. Our data indicate that hematopoietic caspase-1/11 activation is involved in vascular inflammation and atherosclerosis, and plays an important role in cardiovascular disease progression.
U2 - 10.1111/febs.13279
DO - 10.1111/febs.13279
M3 - Article
C2 - 25817537
SN - 1742-464X
VL - 282
SP - 2327
EP - 2338
JO - FEBS Journal
JF - FEBS Journal
IS - 12
ER -