TY - JOUR
T1 - Biofunctionalized pectin hydrogels as 3D cellular microenvironments
AU - Neves, Sara C.
AU - Gomes, David B.
AU - Sousa, Aureliana
AU - Bidarra, Silvia J.
AU - Petrini, Paola
AU - Moroni, Lorenzo
AU - Barrias, Cristina C.
AU - Granja, Pedro L.
PY - 2015
Y1 - 2015
N2 - In situ-forming hydrogels of pectin, a polysaccharide present in the cell wall of higher plants, were prepared using an internal ionotropic gelation strategy based on calcium carbonate/D-glucono-delta-lactone, and explored for the first time as cell delivery vehicles. Since no ultrapure pectins are commercially available yet, a simple and efficient purification method was established, effectively reducing the levels of proteins, polyphenols and endotoxins of the raw pectin. The purified pectin was then functionalized by carbodiimide chemistry with a cell-adhesive peptide (RGD). Its gelation was analyzed by rheometry and optimized. Human mesenchymal stem cells embedded within unmodified and RGD-pectin hydrogels of different viscoelasticities (1.5 and 2.5 wt%) remained viable and metabolically active for up to 14 days. On unmodified pectin hydrogels, cells remained isolated and round-shaped. In contrast, within RGD-pectin hydrogels they elongated, spread, established cell-to-cell contacts, produced extracellular matrix, and migrated outwards the hydrogels. After 7 days of subcutaneous implantation in mice, acellular pectin hydrogels were considerably degraded, particularly the 1.5 wt% hydrogels. Altogether, these findings show the great potential of pectin-based hydrogels, which combine an interesting set of easily tunable properties, including the in vivo degradation profile, for tissue engineering and regenerative medicine.
AB - In situ-forming hydrogels of pectin, a polysaccharide present in the cell wall of higher plants, were prepared using an internal ionotropic gelation strategy based on calcium carbonate/D-glucono-delta-lactone, and explored for the first time as cell delivery vehicles. Since no ultrapure pectins are commercially available yet, a simple and efficient purification method was established, effectively reducing the levels of proteins, polyphenols and endotoxins of the raw pectin. The purified pectin was then functionalized by carbodiimide chemistry with a cell-adhesive peptide (RGD). Its gelation was analyzed by rheometry and optimized. Human mesenchymal stem cells embedded within unmodified and RGD-pectin hydrogels of different viscoelasticities (1.5 and 2.5 wt%) remained viable and metabolically active for up to 14 days. On unmodified pectin hydrogels, cells remained isolated and round-shaped. In contrast, within RGD-pectin hydrogels they elongated, spread, established cell-to-cell contacts, produced extracellular matrix, and migrated outwards the hydrogels. After 7 days of subcutaneous implantation in mice, acellular pectin hydrogels were considerably degraded, particularly the 1.5 wt% hydrogels. Altogether, these findings show the great potential of pectin-based hydrogels, which combine an interesting set of easily tunable properties, including the in vivo degradation profile, for tissue engineering and regenerative medicine.
U2 - 10.1039/c4tb00885e
DO - 10.1039/c4tb00885e
M3 - Article
SN - 2050-750X
VL - 3
SP - 2096
EP - 2108
JO - Journal of Materials Chemistry. B, Materials for Biology and Medicine
JF - Journal of Materials Chemistry. B, Materials for Biology and Medicine
IS - 10
ER -