Bile salts predict liver regeneration in rabbit model of portal vein embolization

L. T. Hoekstra, M. Rietkerk, K. P. van Lienden, J. W. van den Esschert, F.G. Schaap, T.M. van Gulik*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

BACKGROUND: Portal vein embolization (PVE) is employed to increase future remnant liver (FRL) volume through induction of hepatocellular regeneration in the nonembolized liver lobe. The regenerative response is commonly determined by CT volumetry after PVE. The aim of the study was to examine plasma bile salts and triglycerides in the prediction of the regenerative response following PVE. METHODS: PVE of the cranial liver lobe was performed in 15 rabbits, divided into three groups: NaCl (control), gelatin sponge (short-term occlusion), and polyvinyl alcohol particles with coils (PVAc, long-term occlusion). In all rabbits CT volumetry and blood sampling were performed prior to PVE and on days 3 and 7. Plasma bile salts and triglycerides were correlated with volume increase of the nonembolized liver lobe. RESULTS: After 3 and 7 d, respectively, FRL volume was increased in both embolized groups, with the largest hypertrophy response observed in the PVAc group. Plasma bile salt levels were increased after PVE, especially in the PVAc group at day 3 (P < 0.01 compared to gelatin sponge). Plasma bile salts at day 3 predicted FRL volume increase at day 7 showing a positive correlation of 0.811 (P < 0.001). Levels of triglycerides were not significantly altered in either of the PVE procedures. CONCLUSIONS: Plasma bile salt levels early after PVE strongly correlated with the regenerative response in a rabbit model of PVE, showing more pronounced elevation with larger volume increase of the nonembolized lobe. Therefore, plasma bile salts, but not triglycerides, can be used in the prediction of the regenerative response after PVE.
Original languageEnglish
Pages (from-to)773-8
JournalJournal of Surgical Research
Volume178
Issue number2
DOIs
Publication statusPublished - 1 Jan 2012

Cite this