TY - JOUR
T1 - Behavioural interference at event boundaries reduces long-term memory performance in the virtual water maze task without affecting working memory performance
AU - Pahlenkemper, Marie
AU - Bernhard, Hannah
AU - Reithler, Joel
AU - Roberts, Mark J.
N1 - Publisher Copyright:
© 2024 The Author(s)
PY - 2024/9/1
Y1 - 2024/9/1
N2 - Narrative episodic memory of movie clips can be retroactively impaired by presenting unrelated stimuli coinciding with event boundaries. This effect has been linked with rapid hippocampal processes triggered by the offset of the event, that are alternatively related either to memory consolidation or with working memory processes. Here we tested whether this effect extended to spatial memory, the temporal specificity and extent of the interference, and its effect on working- vs long-term memory. In three computerized adaptations of the Morris Water Maze, participants learned the location of an invisible target over three trials each. A second spatial navigation task was presented either immediately after finding the target, after a 10-s delay, or no second task was presented (control condition). A recall session, in which participants indicated the learned target location with 10 ‘pin-drop’ trials for each condition, was performed after a 1-h or a 24-h break. Spatial memory was measured by the mean distance between pins and the true location. Results indicated that the immediate presentation of the second task led to worse memory performance, for both break durations, compared to the delayed condition. There was no difference in performance between the delayed presentation and the control condition. Despite this long-term memory effect, we found no difference in the rate of performance improvement during the learning session, indicating no effect of the second task on working memory. Our findings are in line with a rapid process, linked to the offset of an event, that is involved in the early stages of memory consolidation.
AB - Narrative episodic memory of movie clips can be retroactively impaired by presenting unrelated stimuli coinciding with event boundaries. This effect has been linked with rapid hippocampal processes triggered by the offset of the event, that are alternatively related either to memory consolidation or with working memory processes. Here we tested whether this effect extended to spatial memory, the temporal specificity and extent of the interference, and its effect on working- vs long-term memory. In three computerized adaptations of the Morris Water Maze, participants learned the location of an invisible target over three trials each. A second spatial navigation task was presented either immediately after finding the target, after a 10-s delay, or no second task was presented (control condition). A recall session, in which participants indicated the learned target location with 10 ‘pin-drop’ trials for each condition, was performed after a 1-h or a 24-h break. Spatial memory was measured by the mean distance between pins and the true location. Results indicated that the immediate presentation of the second task led to worse memory performance, for both break durations, compared to the delayed condition. There was no difference in performance between the delayed presentation and the control condition. Despite this long-term memory effect, we found no difference in the rate of performance improvement during the learning session, indicating no effect of the second task on working memory. Our findings are in line with a rapid process, linked to the offset of an event, that is involved in the early stages of memory consolidation.
KW - Episodic memory
KW - Event boundaries
KW - Memory interference
KW - Spatial navigation
KW - Virtual Morris water maze
U2 - 10.1016/j.cognition.2024.105859
DO - 10.1016/j.cognition.2024.105859
M3 - Article
SN - 0010-0277
VL - 250
JO - Cognition
JF - Cognition
M1 - 105859
ER -