Automatic Collateral Scoring From 3D CTA Images

Jiahang Su*, Lennard Wolff, Adriaan C. G. M. van Es, Wim van Zwam, Charles Majoie, Diederik W. J. Dippel, Aad van der Lugt, Wiro J. Niessen, Theo van Walsum

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review


The collateral score is an important biomarker in decision making for endovascular treatment (EVT) of patients with ischemic stroke. The existing collateral grading systems are based on visual inspection and prone to subjective interpretation and interobserver variation. The purpose of our work is the development of an automatic collateral scoring method. In this work, we present a method that is inspired by human collateral scoring. Firstly, we define an anatomical region by atlas-based registration and extract vessel structures using a deep convolutional neural network. From this, high-level features based on the ratios of vessel length and volume of the occluded and the contralateral side are defined. Multi-class classification models are used to map the feature space to a four-grade collateral score and a quantitative score. The dataset used for training, validation and testing is from a registry of images acquired in clinical routine at multiple medical centers. The model performance is tested on 269 subjects, achieving an accuracy of 0.8. The dichotomized collateral score accuracy is 0.9. The error is comparable to the interobserver variation, the results are comparable to the performance of two radiologists with 10 to 30 years of experience.

Original languageEnglish
Pages (from-to)2190-2200
Number of pages11
JournalIeee Transactions on Medical Imaging
Issue number6
Publication statusPublished - Jun 2020


  • Deep learning
  • brain vessel segmentation
  • 3D CTA images

Cite this