TY - JOUR
T1 - Association of Amyloid and Tau With Cognition in Preclinical Alzheimer Disease
T2 - A Longitudinal Study
AU - Hanseeuw, Bernard J.
AU - Betensky, Rebecca A.
AU - Jacobs, Heidi I. L.
AU - Schultz, Aaron P.
AU - Sepulcre, Jorge
AU - Becker, J. Alex
AU - Cosio, Danielle M. Orozco
AU - Farrell, Michelle
AU - Quiroz, Yakeel T.
AU - Mormino, Elizabeth C.
AU - Buckley, Rachel F.
AU - Papp, Kathryn V.
AU - Amariglio, Rebecca A.
AU - Dewachter, Ilse
AU - Ivanoiu, Adrian
AU - Huijbers, Willem
AU - Hedden, Trey
AU - Marshall, Gad A.
AU - Chhatwal, Jasmeer P.
AU - Rentz, Dorene M.
AU - Sperling, Reisa A.
AU - Johnson, Keith
N1 - Funding Information:
funding from National Institutes of Health grants P01 AG036694 (Drs Sperling and Johnson), R01 AG046396 (Dr Johnson), R01 AG053509 (Dr Hedden), and K23 EB019023 (Dr Sepulcre); the
Funding Information:
Funding/Support: This work was supported with
Funding Information:
reported grants from the Belgian National Fund for Scientific Research and the Belgian Foundation for Alzheimer Research during the conduct of the study and personal fees from GE Healthcare outside the submitted work. Dr Jacobs reported funding from the European Union's Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie Grant agreement (IF-2015-GF, 706714). Dr Becker reported grants from the National Institutes of Health during the conduct of the study. Dr Quiroz reported grants from the National Institutes of Health and the National Institute on Aging during the conduct of the study. Dr Hedden reported grants from the National Institutes of Health during the conduct of the study. Dr Rentz reported other support from Eli Lilly, Neurotrack, and Biogen outside the submitted work. Dr Sperling reported grants from Janssen during the conduct of the study and personal fees from AC Immune, Biogen, and Roche outside the submitted work. Dr Johnson reported grants from the National Institutes of Health; personal fees from Biogen, Lilly/Avid, Merck, Novartis, Takeda, Roche/ Genentech, and Janssen; and grants from Alzheimer’s Association and from Alzheimer’s Drug Discovery Foundation during the conduct of the study. No other disclosures were reported.
Publisher Copyright:
© 2019 American Medical Association. All rights reserved.
PY - 2019/8
Y1 - 2019/8
N2 - Key PointsQuestionIs cognitive decline associated with amyloid-beta or tau tangles accumulation? FindingsIn this cohort study that included 60 normal older adults with repeated positron emission tomography measures, the rate of tau accumulation in the inferior temporal neocortex was associated with the rate of cognitive decline. Amyloid accumulation was associated with subsequent tau accumulation, and this sequence of successive amyloid and tau changes in neocortex was found to mediate the association of initial amyloid with final cognition, measured 7 years later. MeaningAmyloid positron emission tomography is useful to detect early Alzheimer pathology; repeated tau positron emission tomography is useful to track disease progression.ImportancePositron emission tomography (PET) imaging now allows in vivo visualization of both neuropathologic hallmarks of Alzheimer disease (AD): amyloid-beta (A beta) plaques and tau neurofibrillary tangles. Observing their progressive accumulation in the brains of clinically normal older adults is critically important to understand the pathophysiologic cascade leading to AD and to inform the choice of outcome measures in prevention trials. ObjectiveTo assess the associations among A beta, tau, and cognition, measured during different observation periods for 7 years. Design, Setting, and ParticipantsProspective cohort study conducted between 2010 and 2017 at the Harvard Aging Brain Study, Boston, Massachusetts. The study enrolled 279 clinically normal participants. An additional 90 individuals were approached but declined the study or did not meet the inclusion criteria. In this report, we analyzed data from 60 participants who had multiple A beta and tau PET observations available on October 31, 2017. Main Outcomes and MeasuresA median of 3 Pittsburgh compound B-PET (A beta, 2010-2017) and 2 flortaucipir-PET (tau, 2013-2017) images were collected. We used initial PET and slope data, assessing the rates of change in A beta and tau, to measure cognitive changes. Cognition was evaluated annually using the Preclinical Alzheimer Cognitive Composite (2010-2017). Annual consensus meetings evaluated progression to mild cognitive impairment. ResultsOf the 60 participants, 35 were women (58%) and 25 were men (42%); median age at inclusion was 73 years (range, 65-85 years). Seventeen participants (28%) exhibited an initial high A beta burden. An antecedent rise in A beta was associated with subsequent changes in tau (1.07 flortaucipir standardized uptake value ratios [SUVr]/PiB-SUVr; 95% CI, 0.13-3.46; P=.02). Tau changes were associated with cognitive changes (-3.28 z scores/SUVR; 95% CI, -6.67 to -0.91; P=.001), covarying baseline A beta and tau. Tau changes were greater in the participants who progressed to mild cognitive impairment (n=6) than in those who did not (n=11; 0.05 SUVr per year; 95% CI, 0.03-0.07; P=.001). A serial mediation model demonstrated that the association between initial A beta and final cognition, measured 7 years later, was mediated by successive changes in A beta and tau. Conclusions and RelevanceWe identified sequential changes in normal older adults, from A beta to tau to cognition, after which the participants with high A beta with greater tau increase met clinical criteria for mild cognitive impairment. These findings highlight the importance of repeated tau-PET observations to track disease progression and the importance of repeated amyloid-PET observations to detect the earliest AD pathologic changes.This cohort study assesses the associations among amyloid-beta, tau, and cognition, measured during different observation periods for 7 years.
AB - Key PointsQuestionIs cognitive decline associated with amyloid-beta or tau tangles accumulation? FindingsIn this cohort study that included 60 normal older adults with repeated positron emission tomography measures, the rate of tau accumulation in the inferior temporal neocortex was associated with the rate of cognitive decline. Amyloid accumulation was associated with subsequent tau accumulation, and this sequence of successive amyloid and tau changes in neocortex was found to mediate the association of initial amyloid with final cognition, measured 7 years later. MeaningAmyloid positron emission tomography is useful to detect early Alzheimer pathology; repeated tau positron emission tomography is useful to track disease progression.ImportancePositron emission tomography (PET) imaging now allows in vivo visualization of both neuropathologic hallmarks of Alzheimer disease (AD): amyloid-beta (A beta) plaques and tau neurofibrillary tangles. Observing their progressive accumulation in the brains of clinically normal older adults is critically important to understand the pathophysiologic cascade leading to AD and to inform the choice of outcome measures in prevention trials. ObjectiveTo assess the associations among A beta, tau, and cognition, measured during different observation periods for 7 years. Design, Setting, and ParticipantsProspective cohort study conducted between 2010 and 2017 at the Harvard Aging Brain Study, Boston, Massachusetts. The study enrolled 279 clinically normal participants. An additional 90 individuals were approached but declined the study or did not meet the inclusion criteria. In this report, we analyzed data from 60 participants who had multiple A beta and tau PET observations available on October 31, 2017. Main Outcomes and MeasuresA median of 3 Pittsburgh compound B-PET (A beta, 2010-2017) and 2 flortaucipir-PET (tau, 2013-2017) images were collected. We used initial PET and slope data, assessing the rates of change in A beta and tau, to measure cognitive changes. Cognition was evaluated annually using the Preclinical Alzheimer Cognitive Composite (2010-2017). Annual consensus meetings evaluated progression to mild cognitive impairment. ResultsOf the 60 participants, 35 were women (58%) and 25 were men (42%); median age at inclusion was 73 years (range, 65-85 years). Seventeen participants (28%) exhibited an initial high A beta burden. An antecedent rise in A beta was associated with subsequent changes in tau (1.07 flortaucipir standardized uptake value ratios [SUVr]/PiB-SUVr; 95% CI, 0.13-3.46; P=.02). Tau changes were associated with cognitive changes (-3.28 z scores/SUVR; 95% CI, -6.67 to -0.91; P=.001), covarying baseline A beta and tau. Tau changes were greater in the participants who progressed to mild cognitive impairment (n=6) than in those who did not (n=11; 0.05 SUVr per year; 95% CI, 0.03-0.07; P=.001). A serial mediation model demonstrated that the association between initial A beta and final cognition, measured 7 years later, was mediated by successive changes in A beta and tau. Conclusions and RelevanceWe identified sequential changes in normal older adults, from A beta to tau to cognition, after which the participants with high A beta with greater tau increase met clinical criteria for mild cognitive impairment. These findings highlight the importance of repeated tau-PET observations to track disease progression and the importance of repeated amyloid-PET observations to detect the earliest AD pathologic changes.This cohort study assesses the associations among amyloid-beta, tau, and cognition, measured during different observation periods for 7 years.
KW - POSITRON-EMISSION-TOMOGRAPHY
KW - NATIONAL INSTITUTE
KW - DIAGNOSTIC GUIDELINES
KW - DECLINE
KW - NEURODEGENERATION
KW - RECOMMENDATIONS
KW - WORKGROUPS
KW - POPULATION
KW - DEPOSITION
KW - DEMENTIA
U2 - 10.1001/jamaneurol.2019.1424
DO - 10.1001/jamaneurol.2019.1424
M3 - Article
C2 - 31157827
SN - 2168-6149
VL - 76
SP - 915
EP - 924
JO - JAMA Neurology
JF - JAMA Neurology
IS - 8
ER -