Assessing the impact of deep-learning assistance on the histopathological diagnosis of serous tubal intraepithelial carcinoma (STIC) in fallopian tubes

Joep M. A. Bogaerts*, Miranda P. Steenbeek, John-Melle Bokhorst, Majke H. D. van Bommel, Luca Abete, Francesca Addante, Mariel Brinkhuis, Alicja Chrzan, Fleur Cordier, Mojgan Devouassoux-Shisheboran, Juan Fernandez-Perez, Anna Fischer, C. Blake Gilks, Angela Guerriero, Marta Jaconi, Tony G. Kleijn, Loes Kooreman, Spencer Martin, Jakob Milla, Nadine NarducciChara Ntala, Vinita Parkash, Christophe de Pauw, Joseph T. Rabban, Lucia Rijstenberg, Robert Rottscholl, Annette Staebler, Koen van de Vijver, Gian Franco Zannoni, Monica van Zanten, Joanne A. de Hullu, Michiel Simons, Jeroen A. W. M. van Der Laak, AI STIC Study Group

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

Fingerprint

Dive into the research topics of 'Assessing the impact of deep-learning assistance on the histopathological diagnosis of serous tubal intraepithelial carcinoma (STIC) in fallopian tubes'. Together they form a unique fingerprint.

INIS

Psychology

Medicine and Dentistry

Neuroscience

Keyphrases

Nursing and Health Professions