TY - JOUR
T1 - Assessing preoperative risk of STR in skull meningiomas using MR radiomics and machine learning
AU - Musigmann, Manfred
AU - Akkurt, Burak Han
AU - Krähling, Hermann
AU - Brokinkel, Benjamin
AU - Henssen, Dylan J H A
AU - Sartoretti, Thomas
AU - Nacul, Nabila Gala
AU - Stummer, Walter
AU - Heindel, Walter
AU - Mannil, Manoj
N1 - © 2022. The Author(s).
PY - 2022/8/18
Y1 - 2022/8/18
N2 - Our aim is to predict possible gross total and subtotal resections of skull meningiomas from pre-treatment T1 post contrast MR-images using radiomics and machine learning in a representative patient cohort. We analyse the accuracy of our model predictions depending on the tumor location within the skull and the postoperative tumor volume. In this retrospective, IRB-approved study, image segmentation of the contrast enhancing parts of the tumor was semi-automatically performed using the 3D Slicer open-source software platform. Imaging data were split into training data and independent test data at random. We extracted a total of 107 radiomic features by hand-delineated regions of interest on T1 post contrast MR images. Feature preselection and model construction were performed with eight different machine learning algorithms. Each model was estimated 100 times on new training data and then tested on a previously unknown, independent test data set to avoid possible overfitting. Our cohort included 138 patients. A gross total resection of the meningioma was performed in 107 cases and a subtotal resection in the remaining 31 cases. Using the training data, the mean area under the curve (AUC), mean accuracy, mean kappa, mean sensitivity and mean specificity were 0.901, 0.875, 0.629, 0.675 and 0.933 respectively. We obtained very similar results with the independent test data: mean AUC = 0.900, mean accuracy = 0.881, mean kappa = 0.644, mean sensitivity = 0.692 and mean specificity = 0.936. Thus, our model exposes good and stable predictive performance with both training and test data. Our radiomics approach shows that with machine learning algorithms and comparatively few explanatory factors such as the location of the tumor within the skull as well as its shape, it is possible to make accurate predictions about whether a meningioma can be completely resected by surgery. Complete resections and resections with larger postoperative tumor volumes can be predicted with very high accuracy. However, cases with very small postoperative tumor volumes are comparatively difficult to predict correctly.
AB - Our aim is to predict possible gross total and subtotal resections of skull meningiomas from pre-treatment T1 post contrast MR-images using radiomics and machine learning in a representative patient cohort. We analyse the accuracy of our model predictions depending on the tumor location within the skull and the postoperative tumor volume. In this retrospective, IRB-approved study, image segmentation of the contrast enhancing parts of the tumor was semi-automatically performed using the 3D Slicer open-source software platform. Imaging data were split into training data and independent test data at random. We extracted a total of 107 radiomic features by hand-delineated regions of interest on T1 post contrast MR images. Feature preselection and model construction were performed with eight different machine learning algorithms. Each model was estimated 100 times on new training data and then tested on a previously unknown, independent test data set to avoid possible overfitting. Our cohort included 138 patients. A gross total resection of the meningioma was performed in 107 cases and a subtotal resection in the remaining 31 cases. Using the training data, the mean area under the curve (AUC), mean accuracy, mean kappa, mean sensitivity and mean specificity were 0.901, 0.875, 0.629, 0.675 and 0.933 respectively. We obtained very similar results with the independent test data: mean AUC = 0.900, mean accuracy = 0.881, mean kappa = 0.644, mean sensitivity = 0.692 and mean specificity = 0.936. Thus, our model exposes good and stable predictive performance with both training and test data. Our radiomics approach shows that with machine learning algorithms and comparatively few explanatory factors such as the location of the tumor within the skull as well as its shape, it is possible to make accurate predictions about whether a meningioma can be completely resected by surgery. Complete resections and resections with larger postoperative tumor volumes can be predicted with very high accuracy. However, cases with very small postoperative tumor volumes are comparatively difficult to predict correctly.
KW - Humans
KW - Machine Learning
KW - Magnetic Resonance Imaging/methods
KW - Meningeal Neoplasms/diagnostic imaging
KW - Meningioma/diagnostic imaging
KW - Retrospective Studies
KW - Skull/pathology
U2 - 10.1038/s41598-022-18458-4
DO - 10.1038/s41598-022-18458-4
M3 - Article
C2 - 35982218
SN - 2045-2322
VL - 12
JO - Scientific Reports
JF - Scientific Reports
IS - 1
M1 - 14043
ER -