Artificial intelligence in cancer imaging: Clinical challenges and applications

Wenya Linda Bi, Ahmed Hosny, Matthew B. Schabath, Maryellen L. Giger, Nicolai J. Birkbak, Alireza Mehrtash, Tavis Allison, Omar Arnaout, Christopher Abbosh, Ian F. Dunn, Raymond H. Mak, Rulla M. Tamimi, Clare M. Tempany, Charles Swanton, Udo Hoffmann, Lawrence H. Schwartz, Robert J. Gillies, Raymond Y. Huang, Hugo J. W. L. Aerts*

*Corresponding author for this work

Research output: Contribution to journal(Systematic) Review article peer-review

Abstract

Judgement, as one of the core tenets of medicine, relies upon the integration of multilayered data with nuanced decision making. Cancer offers a unique context for medical decisions given not only its variegated forms with evolution of disease but also the need to take into account the individual condition of patients, their ability to receive treatment, and their responses to treatment. Challenges remain in the accurate detection, characterization, and monitoring of cancers despite improved technologies. Radiographic assessment of disease most commonly relies upon visual evaluations, the interpretations of which may be augmented by advanced computational analyses. In particular, artificial intelligence (AI) promises to make great strides in the qualitative interpretation of cancer imaging by expert clinicians, including volumetric delineation of tumors over time, extrapolation of the tumor genotype and biological course from its radiographic phenotype, prediction of clinical outcome, and assessment of the impact of disease and treatment on adjacent organs. AI may automate processes in the initial interpretation of images and shift the clinical workflow of radiographic detection, management decisions on whether or not to administer an intervention, and subsequent observation to a yet to be envisioned paradigm. Here, the authors review the current state of AI as applied to medical imaging of cancer and describe advances in 4 tumor types (lung, brain, breast, and prostate) to illustrate how common clinical problems are being addressed. Although most studies evaluating AI applications in oncology to date have not been vigorously validated for reproducibility and generalizability, the results do highlight increasingly concerted efforts in pushing AI technology to clinical use and to impact future directions in cancer care.

Original languageEnglish
Pages (from-to)127-157
Number of pages31
JournalCa-A Cancer Journal for Clinicians
Volume69
Issue number2
DOIs
Publication statusPublished - 2019

Keywords

  • artificial intelligence
  • cancer imaging
  • clinical challenges
  • deep learning
  • radiomics
  • COMPUTER-AIDED DETECTION
  • DIGITAL BREAST TOMOSYNTHESIS
  • BACKGROUND PARENCHYMAL ENHANCEMENT
  • CONVOLUTIONAL NEURAL-NETWORK
  • MULTI-PARAMETRIC MRI
  • DETECTION CAD SYSTEM
  • HIGH-GRADE GLIOMAS
  • PROSTATE-CANCER
  • LUNG-CANCER
  • PULMONARY NODULES

Fingerprint

Dive into the research topics of 'Artificial intelligence in cancer imaging: Clinical challenges and applications'. Together they form a unique fingerprint.

Cite this