TY - JOUR
T1 - Applying the electronic nose for pre-operative SARS-CoV-2 screening
AU - Wintjens, Anne G. W. E.
AU - Hintzen, Kim F. H.
AU - Engelen, Sanne M. E.
AU - Lubbers, Tim
AU - Savelkoul, Paul H. M.
AU - Wesseling, Geertjan
AU - van der Palen, Job A. M.
AU - Bouvy, Nicole D.
N1 - Funding Information:
We thank Narcis Serafras, Max Scheepers, Marijn Jense, and Stijn Nuijten for their contribution to the data collection. This study was supported by the EAES Covid-19 research grand.
Publisher Copyright:
© 2020, The Author(s).
PY - 2021/12
Y1 - 2021/12
N2 - Background Infection with SARS-CoV-2 causes corona virus disease (COVID-19). The most standard diagnostic method is reverse transcription-polymerase chain reaction (RT-PCR) on a nasopharyngeal and/or an oropharyngeal swab. The high occurrence of false-negative results due to the non-presence of SARS-CoV-2 in the oropharyngeal environment renders this sampling method not ideal. Therefore, a new sampling device is desirable. This proof-of-principle study investigated the possibility to train machine-learning classifiers with an electronic nose (Aeonose) to differentiate between COVID-19-positive and negative persons based on volatile organic compounds (VOCs) analysis. Methods Between April and June 2020, participants were invited for breath analysis when a swab for RT-PCR was collected. If the RT-PCR resulted negative, the presence of SARS-CoV-2-specific antibodies was checked to confirm the negative result. All participants breathed through the Aeonose for five minutes. This device contains metal-oxide sensors that change in conductivity upon reaction with VOCs in exhaled breath. These conductivity changes are input data for machine learning and used for pattern recognition. The result is a value between - 1 and + 1, indicating the infection probability. Results 219 participants were included, 57 of which COVID-19 positive. A sensitivity of 0.86 and a negative predictive value (NPV) of 0.92 were found. Adding clinical variables to machine-learning classifier via multivariate logistic regression analysis, the NPV improved to 0.96. Conclusions The Aeonose can distinguish COVID-19 positive from negative participants based on VOC patterns in exhaled breath with a high NPV. The Aeonose might be a promising, non-invasive, and low-cost triage tool for excluding SARS-CoV-2 infection in patients elected for surgery.
AB - Background Infection with SARS-CoV-2 causes corona virus disease (COVID-19). The most standard diagnostic method is reverse transcription-polymerase chain reaction (RT-PCR) on a nasopharyngeal and/or an oropharyngeal swab. The high occurrence of false-negative results due to the non-presence of SARS-CoV-2 in the oropharyngeal environment renders this sampling method not ideal. Therefore, a new sampling device is desirable. This proof-of-principle study investigated the possibility to train machine-learning classifiers with an electronic nose (Aeonose) to differentiate between COVID-19-positive and negative persons based on volatile organic compounds (VOCs) analysis. Methods Between April and June 2020, participants were invited for breath analysis when a swab for RT-PCR was collected. If the RT-PCR resulted negative, the presence of SARS-CoV-2-specific antibodies was checked to confirm the negative result. All participants breathed through the Aeonose for five minutes. This device contains metal-oxide sensors that change in conductivity upon reaction with VOCs in exhaled breath. These conductivity changes are input data for machine learning and used for pattern recognition. The result is a value between - 1 and + 1, indicating the infection probability. Results 219 participants were included, 57 of which COVID-19 positive. A sensitivity of 0.86 and a negative predictive value (NPV) of 0.92 were found. Adding clinical variables to machine-learning classifier via multivariate logistic regression analysis, the NPV improved to 0.96. Conclusions The Aeonose can distinguish COVID-19 positive from negative participants based on VOC patterns in exhaled breath with a high NPV. The Aeonose might be a promising, non-invasive, and low-cost triage tool for excluding SARS-CoV-2 infection in patients elected for surgery.
KW - COVID-19
KW - Electronic nose
KW - Exhaled air
KW - Innovative diagnostics
KW - Volatile organic compounds
KW - CANCER
U2 - 10.1007/s00464-020-08169-0
DO - 10.1007/s00464-020-08169-0
M3 - Article
C2 - 33269428
SN - 0930-2794
VL - 35
SP - 6671
EP - 6678
JO - Surgical endoscopy and other interventional techniques
JF - Surgical endoscopy and other interventional techniques
IS - 12
ER -