Abstract
Apoptosis and chemokine induction after renal ischemia-reperfusion.
Daemen MA, de Vries B, van't Veer C, Wolfs TG, Buurman WA.
Department of General Surgery of the University of Maastricht, The Netherlands.
BACKGROUND: One of the earliest prerequisites for the development of inflammation after ischemia-reperfusion (I/R) is local chemokine expression. We recently demonstrated that apoptosis, characterized by intracellular caspase-activation, contributes to the development of inflammation after I/R. METHODS: The contribution of apoptosis was investigated using the pan-caspase inhibitor Z-Val-Ala-Asp(OMe)-CH2F in a murine model of renal I/R. Renal expression of the chemokines macrophage inflammatory protein-2 (MIP-2) and KC was studied using RT-PCR and immunohistology. Measuring myeloperoxidase activity and serum ureum and creatinine levels assessed neutrophil influx and kidney dysfunction. RESULTS: We demonstrate renal up-regulation of KC and MIP-2 after 1 to 16 hr of reperfusion. Treatment with the caspase inhibitor Z-Val-Ala-Asp(OMe)-CH2F effectively prevented I/R-induced renal apoptosis, KC, and MIP-2 up-regulation after 2 hr of reperfusion as well as neutrophil influx and functional impairment after 24 hr of reperfusion. CONCLUSIONS: These data for the first time show that chemokine induction following I/R is dependent on caspase activation
Daemen MA, de Vries B, van't Veer C, Wolfs TG, Buurman WA.
Department of General Surgery of the University of Maastricht, The Netherlands.
BACKGROUND: One of the earliest prerequisites for the development of inflammation after ischemia-reperfusion (I/R) is local chemokine expression. We recently demonstrated that apoptosis, characterized by intracellular caspase-activation, contributes to the development of inflammation after I/R. METHODS: The contribution of apoptosis was investigated using the pan-caspase inhibitor Z-Val-Ala-Asp(OMe)-CH2F in a murine model of renal I/R. Renal expression of the chemokines macrophage inflammatory protein-2 (MIP-2) and KC was studied using RT-PCR and immunohistology. Measuring myeloperoxidase activity and serum ureum and creatinine levels assessed neutrophil influx and kidney dysfunction. RESULTS: We demonstrate renal up-regulation of KC and MIP-2 after 1 to 16 hr of reperfusion. Treatment with the caspase inhibitor Z-Val-Ala-Asp(OMe)-CH2F effectively prevented I/R-induced renal apoptosis, KC, and MIP-2 up-regulation after 2 hr of reperfusion as well as neutrophil influx and functional impairment after 24 hr of reperfusion. CONCLUSIONS: These data for the first time show that chemokine induction following I/R is dependent on caspase activation
Original language | English |
---|---|
Pages (from-to) | 1007-1011 |
Number of pages | 7 |
Journal | Transplantation |
Volume | 71 |
Issue number | 7 |
DOIs | |
Publication status | Published - 1 Jan 2001 |