Angiostatic activity of DNA methyltransferase inhibitors.

D.M.E.I. Hellebrekers, K.W. Jair, E. Vire, S. Eguchi, N.T.H. Hoebers, M.F. Fraga, M, Esteller, F. Fuks, S.B. Baylin, M. van Engeland, A.W. Griffioen*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

Inhibitors of DNA methyltransferases (DNMT) and histone deacetylases can reactivate epigenetically silenced tumor suppressor genes and thereby decrease tumor cell growth. Little, however, is known on the effects of these compounds in endothelial cell biology and tumor angiogenesis. Here, we show that the DNMT inhibitors 5-aza-2'-deoxycytidine and zebularine markedly decrease vessel formation in different tumor models. We show that DNMT inhibitors are antiproliferative for tumor-conditioned endothelial cells, without affecting endothelial cell apoptosis and migration. Furthermore, these compounds inhibit angiogenesis in vitro and in vivo as shown by inhibition of endothelial cells sprouting in a three-dimensional gel and inhibition of microvessel formation in the chorioallantoic membrane, respectively. 5-Aza-2'-deoxycytidine, as well as the histone deacetylase inhibitor trichostatin A, reactivates the growth-inhibiting genes TSP1, JUNB, and IGFBP3, which are suppressed in tumor-conditioned endothelial cells. Despite enhanced DNMT activity and increased overall genomic methylation levels in tumor-conditioned endothelial cells, silencing of these genes seemed not to be regulated by direct promoter hypermethylation. For IGFBP3, gene expression in endothelial cells correlated with histone H3 acetylation patterns. In conclusion, our data show that DNMT inhibitors have angiostatic activity in addition to their inhibitory effects on tumor cells. This dual action of these compounds makes them promising anticancer therapeutics.
Original languageEnglish
Pages (from-to)467-75
JournalMolecular Cancer Therapeutics
Volume5
Issue number2
DOIs
Publication statusPublished - 1 Jan 2006

Cite this