TY - JOUR
T1 - An ordinal selection of stable sets in the sense of Hillas
AU - Vermeulen, A.J.
AU - Jansen, M.J.M.
PY - 2001/1/1
Y1 - 2001/1/1
N2 - In this paper, it is shown in an example that the original definition of stable sets in Hillas [Econometrica 58 (1990) 1365-1391] does not satisfy (an even slightly weakenened version of) the invariance condition proposed in Mertens [Ordinality in noncooperative games, Core Discussion Paper 8728, CORE Louvain de la Neuve, Belgium, 1987]. However, it is also shown that the basic stability condition of Hillas underlying his definition of stable sets does admit a selection that is invariant in the strong sense, and even ordinal.
AB - In this paper, it is shown in an example that the original definition of stable sets in Hillas [Econometrica 58 (1990) 1365-1391] does not satisfy (an even slightly weakenened version of) the invariance condition proposed in Mertens [Ordinality in noncooperative games, Core Discussion Paper 8728, CORE Louvain de la Neuve, Belgium, 1987]. However, it is also shown that the basic stability condition of Hillas underlying his definition of stable sets does admit a selection that is invariant in the strong sense, and even ordinal.
U2 - 10.1016/S0304-4068(01)00073-8
DO - 10.1016/S0304-4068(01)00073-8
M3 - Article
SN - 0304-4068
VL - 36
SP - 161
EP - 167
JO - Journal of Mathematical Economics
JF - Journal of Mathematical Economics
IS - 36
ER -