TY - JOUR
T1 - An Interpretable Radiomics Model Based on Two-Dimensional Shear Wave Elastography for Predicting Symptomatic Post-Hepatectomy Liver Failure in Patients with Hepatocellular Carcinoma
AU - Zhong, Xian
AU - Salahuddin, Zohaib
AU - Chen, Yi
AU - Woodruff, Henry C.
AU - Long, Haiyi
AU - Peng, Jianyun
AU - Xie, Xiaoyan
AU - Lin, Manxia
AU - Lambin, Philippe
N1 - Funding Information:
This work was supported by the Major Research plan of the National Natural Science Foundation of China (92059201); National Natural Youth Science Foundation of China (81901768). Authors acknowledge financial support for the Maastricht contribution from the European Union’s Horizon research and innovation programme under grant agreement: CHAIMELEON n° 952172, EuCanImage n° 952103, IMI-OPTIMA n° 101034347, EUCAIM (DIGITAL-2022-CLOUD-AI-02) n° 101100633.
Publisher Copyright:
© 2023 by the authors.
PY - 2023/11/1
Y1 - 2023/11/1
N2 - Objective: The aim of this study was to develop and validate an interpretable radiomics model based on two-dimensional shear wave elastography (2D-SWE) for symptomatic post-hepatectomy liver failure (PHLF) prediction in patients undergoing liver resection for hepatocellular carcinoma (HCC). Methods: A total of 345 consecutive patients were enrolled. A five-fold cross-validation was performed during training, and the models were evaluated in the independent test cohort. A multi-patch radiomics model was established based on the 2D-SWE images for predicting symptomatic PHLF. Clinical features were incorporated into the models to train the clinical–radiomics model. The radiomics model and the clinical–radiomics model were compared with the clinical model comprising clinical variables and other clinical predictive indices, including the model for end-stage liver disease (MELD) score and albumin–bilirubin (ALBI) score. Shapley Additive exPlanations (SHAP) was used for post hoc interpretability of the radiomics model. Results: The clinical–radiomics model achieved an AUC of 0.867 (95% CI 0.787–0.947) in the five-fold cross-validation, and this score was higher than that of the clinical model (AUC: 0.809; 95% CI: 0.715–0.902) and the radiomics model (AUC: 0.746; 95% CI: 0.681–0.811). The clinical–radiomics model showed an AUC of 0.822 in the test cohort, higher than that of the clinical model (AUC: 0.684, p = 0.007), radiomics model (AUC: 0.784, p = 0.415), MELD score (AUC: 0.529, p < 0.001), and ALBI score (AUC: 0.644, p = 0.016). The SHAP analysis showed that the first-order radiomics features, including first-order maximum 64 × 64, first-order 90th percentile 64 × 64, and first-order 10th percentile 32 × 32, were the most important features for PHLF prediction. Conclusion: An interpretable clinical–radiomics model based on 2D-SWE and clinical variables can help in predicting symptomatic PHLF in HCC.
AB - Objective: The aim of this study was to develop and validate an interpretable radiomics model based on two-dimensional shear wave elastography (2D-SWE) for symptomatic post-hepatectomy liver failure (PHLF) prediction in patients undergoing liver resection for hepatocellular carcinoma (HCC). Methods: A total of 345 consecutive patients were enrolled. A five-fold cross-validation was performed during training, and the models were evaluated in the independent test cohort. A multi-patch radiomics model was established based on the 2D-SWE images for predicting symptomatic PHLF. Clinical features were incorporated into the models to train the clinical–radiomics model. The radiomics model and the clinical–radiomics model were compared with the clinical model comprising clinical variables and other clinical predictive indices, including the model for end-stage liver disease (MELD) score and albumin–bilirubin (ALBI) score. Shapley Additive exPlanations (SHAP) was used for post hoc interpretability of the radiomics model. Results: The clinical–radiomics model achieved an AUC of 0.867 (95% CI 0.787–0.947) in the five-fold cross-validation, and this score was higher than that of the clinical model (AUC: 0.809; 95% CI: 0.715–0.902) and the radiomics model (AUC: 0.746; 95% CI: 0.681–0.811). The clinical–radiomics model showed an AUC of 0.822 in the test cohort, higher than that of the clinical model (AUC: 0.684, p = 0.007), radiomics model (AUC: 0.784, p = 0.415), MELD score (AUC: 0.529, p < 0.001), and ALBI score (AUC: 0.644, p = 0.016). The SHAP analysis showed that the first-order radiomics features, including first-order maximum 64 × 64, first-order 90th percentile 64 × 64, and first-order 10th percentile 32 × 32, were the most important features for PHLF prediction. Conclusion: An interpretable clinical–radiomics model based on 2D-SWE and clinical variables can help in predicting symptomatic PHLF in HCC.
KW - hepatocellular carcinoma
KW - interpretability
KW - post-hepatectomy liver failure
KW - radiomics
KW - two-dimensional shear wave elastography
U2 - 10.3390/cancers15215303
DO - 10.3390/cancers15215303
M3 - Article
SN - 2072-6694
VL - 15
JO - Cancers
JF - Cancers
IS - 21
M1 - 5303
ER -