An alternative basis for the Kauffman bracket skein module of the Solid Torus via braids

Research output: Chapter in Book/Report/Conference proceedingConference article in proceedingAcademicpeer-review


In this paper we give an alternative basis, \(\mathscr {b}_\mathrm{st}\), for the kauffman bracket skein module of the solid torus, \(\mathrm{kbsm}\left( \mathrm{st}\right) \). The basis \(\mathscr {b}_\mathrm{st}\) is obtained with the use of the tempereley–lieb algebra of type b and it is appropriate for computing the kauffman bracket skein module of the lens spaces l(p, q) via braids.keywordskauffman bracket polynomialskein modulessolid torustemperley–lieb algebra of type bmixed linksmixed braidslens spaces2010 mathematics subject classification57m2757m2520f3620f3820c08.
Original languageEnglish
Title of host publicationKnots, Low-Dimensional Topology and Applications (KNOTS16)
Subtitle of host publicationKnots in Hellas, International Olympic Academy, Greece, July 2016
EditorsColin C. Adams, Cameron McA. Gordon, Vaughan F.R. Jones, Louis H. Kauffman, Sofia Lambropoulou, Kenneth C. Millett, Jozef H. Przytycki, Renzo Ricca, Radmila Sazdanovic
PublisherSpringer, Cham
ISBN (Electronic)978-3-030-16031-9
ISBN (Print)978-3-030-16030-2
Publication statusPublished - 2019
Externally publishedYes

Publication series

SeriesSpringer Proceedings in Mathematics and Statistics

Cite this