TY - JOUR
T1 - Amyloid plaques and normal ageing have differential effects on microglial Ca2+ activity in the mouse brain
AU - Izquierdo, Pablo
AU - Jolivet, Renaud B.
AU - Attwell, David
AU - Madry, Christian
N1 - Funding Information:
Open Access funding enabled and organized by Projekt DEAL. This work was supported by European Research Council (BrainEnergy) and Wellcome Investigator Awards (099222) to DA, a Wellcome Trust four-year PhD studentship to PI and an Alzheimer Forschung Initiative grant (21072) to CM. For the purpose of open access, the authors have applied a CC-BY public licence to any Author Accepted Manuscript version arising from this submission.
Publisher Copyright:
© 2023, The Author(s).
PY - 2024/2
Y1 - 2024/2
N2 - In microglia, changes in intracellular calcium concentration ([Ca2+]i) may regulate process motility, inflammasome activation, and phagocytosis. However, while neurons and astrocytes exhibit frequent spontaneous Ca2+ activity, microglial Ca2+ signals are much rarer and poorly understood. Here, we studied [Ca2+]i changes of microglia in acute brain slices using Fluo-4–loaded cells and mice expressing GCaMP5g in microglia. Spontaneous Ca2+ transients occurred ~ 5 times more frequently in individual microglial processes than in their somata. We assessed whether microglial Ca2+ responses change in Alzheimer's disease (AD) using App NL-G-F knock-in mice. Proximity to Aß plaques strongly affected microglial Ca2+ activity. Although spontaneous Ca2+ transients were unaffected in microglial processes, they were fivefold more frequent in microglial somata near Aß plaques than in wild-type microglia. Microglia away from Aß plaques in AD mice showed intermediate properties for morphology and Ca2+ responses, partly resembling those of wild-type microglia. By contrast, somatic Ca2+ responses evoked by tissue damage were less intense in microglia near Aß plaques than in wild-type microglia, suggesting different mechanisms underlying spontaneous vs. damage-evoked Ca2+ signals. Finally, as similar processes occur in neurodegeneration and old age, we studied whether ageing affected microglial [Ca2+]i. Somatic damage-evoked Ca2+ responses were greatly reduced in microglia from old mice, as in the AD mice. In contrast to AD, however, old age did not alter the occurrence of spontaneous Ca2+ signals in microglial somata but reduced the rate of events in processes. Thus, we demonstrate distinct compartmentalised Ca2+ activity in microglia from healthy, aged and AD-like brains.
AB - In microglia, changes in intracellular calcium concentration ([Ca2+]i) may regulate process motility, inflammasome activation, and phagocytosis. However, while neurons and astrocytes exhibit frequent spontaneous Ca2+ activity, microglial Ca2+ signals are much rarer and poorly understood. Here, we studied [Ca2+]i changes of microglia in acute brain slices using Fluo-4–loaded cells and mice expressing GCaMP5g in microglia. Spontaneous Ca2+ transients occurred ~ 5 times more frequently in individual microglial processes than in their somata. We assessed whether microglial Ca2+ responses change in Alzheimer's disease (AD) using App NL-G-F knock-in mice. Proximity to Aß plaques strongly affected microglial Ca2+ activity. Although spontaneous Ca2+ transients were unaffected in microglial processes, they were fivefold more frequent in microglial somata near Aß plaques than in wild-type microglia. Microglia away from Aß plaques in AD mice showed intermediate properties for morphology and Ca2+ responses, partly resembling those of wild-type microglia. By contrast, somatic Ca2+ responses evoked by tissue damage were less intense in microglia near Aß plaques than in wild-type microglia, suggesting different mechanisms underlying spontaneous vs. damage-evoked Ca2+ signals. Finally, as similar processes occur in neurodegeneration and old age, we studied whether ageing affected microglial [Ca2+]i. Somatic damage-evoked Ca2+ responses were greatly reduced in microglia from old mice, as in the AD mice. In contrast to AD, however, old age did not alter the occurrence of spontaneous Ca2+ signals in microglial somata but reduced the rate of events in processes. Thus, we demonstrate distinct compartmentalised Ca2+ activity in microglia from healthy, aged and AD-like brains.
KW - Ageing
KW - Alzheimer’s disease
KW - Calcium
KW - GCaMP
KW - Microglia
U2 - 10.1007/s00424-023-02871-3
DO - 10.1007/s00424-023-02871-3
M3 - Article
SN - 0031-6768
VL - 476
SP - 257
EP - 270
JO - Pflugers Archiv-European Journal of Physiology
JF - Pflugers Archiv-European Journal of Physiology
IS - 2
ER -