Acrylic Acid Plasma Coated 3D Scaffolds for Cartilage tissue engineering applications

Pieter Cools, Carlos Mota, Ivan Lorenzo-Moldero, Rouba Ghobeira, Nathalie De Geyter, Lorenzo Moroni*, Rino Morent*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

21 Citations (Web of Science)

Abstract

The current generation of tissue engineered additive manufactured scaffolds for cartilage repair shows high potential for growing adult cartilage tissue. This study proposes two surface modification strategies based on non-thermal plasma technology for the modification of poly(ethylene oxide terephthalate/poly(butylene terephthalate) additive manufactured scaffolds to enhance their cell-material interactions. The first, plasma activation in a helium discharge, introduced non-specific polar functionalities. In the second approach, a carboxylic acid plasma polymer coating, using acrylic acid as precursor, was deposited throughout the scaffolds. Both surface modifications were characterized by significant changes in wettability, linked to the incorporation of new oxygen-containing functional groups. Their capacity for chondrogenesis was studied using ATDC5 chondroblasts as a model cellline. The results demonstrate that the carboxylic acid-rich plasma coating had a positive effect on the generation of the glucoaminoglycans (GAG) matrix and stimulated the migration of cells throughout the scaffold. He plasma activation stimulated the formation of GAGs but did not stimulate the migration of chondroblasts throughout the scaffolds. Both plasma treatments spurred chondrogenesis by favoring GAG deposition. This leads to the overall conclusion that acrylic acid based plasma coatings exhibit potential as a surface modification technique for cartilage tissue engineering applications.

Original languageEnglish
Article number3830
Number of pages15
JournalScientific Reports
Volume8
DOIs
Publication statusPublished - 1 Mar 2018

Keywords

  • MESENCHYMAL STEM-CELLS
  • IN-VITRO
  • CHONDROGENIC DIFFERENTIATION
  • SURFACE-CHEMISTRY
  • MEDIUM PRESSURE
  • BONE
  • FILMS
  • POLYMERIZATION
  • POLYACTIVE(R)
  • POLYURETHANE

Cite this