Accessing, Using, and Creating Chemical Property Databases for Computational Toxicology Modeling

A.J. Williams, S. Ekins, O. Spjuth, E.L. Willighagen

    Research output: Chapter in Book/Report/Conference proceedingChapterAcademic

    Abstract

    Toxicity data is expensive to generate, is increasingly seen as precompetitive, and is frequently used for the generation of computational models in a discipline known as computational toxicology. Repositories of chemical property data are valuable for supporting computational toxicologists by providing access to data regarding potential toxicity issues with compounds as well as for the purpose of building structure–toxicity relationships and associated prediction models. These relationships use mathematical, statistical, and modeling computational approaches and can be used to understand the mechanisms by which chemicals cause harm and, ultimately, enable prediction of adverse effects of these chemicals to human health and/or the environment. Such approaches are of value as they offer an opportunity to prioritize chemicals for testing. An increasing amount of data used by computational toxicologists is being published into the public domain and, in parallel, there is a greater availability of open source software for the generation of computational models. This chapter provides an overview of the types of data and software available and how these may be used to produce predictive toxicology models for the community.key wordsbioinformaticscheminformaticscomputational toxicologypublic domain toxicology dataqsartoxicology databases.
    Original languageEnglish
    Title of host publicationComputational Toxicology
    EditorsB. Reisfeld, A.M. Mayeno
    PublisherSpringer
    Pages221-241
    ISBN (Print)978-1-62703-050-2
    DOIs
    Publication statusPublished - 1 Jan 2012

    Publication series

    SeriesMethods in Molecular Biology
    Number929

    Fingerprint

    Dive into the research topics of 'Accessing, Using, and Creating Chemical Property Databases for Computational Toxicology Modeling'. Together they form a unique fingerprint.

    Cite this