TY - JOUR
T1 - A New Monocyte Chemotactic Protein-1/Chemokine CC Motif Ligand-2 Competitor Limiting Neointima Formation and Myocardial Ischemia/Reperfusion Injury in Mice
AU - Liehn, Elisa A.
AU - Piccinini, Anna-Maria
AU - Koenen, Rory R.
AU - Soehnlein, Oliver
AU - Adage, Tiziana
AU - Fatu, Roxana
AU - Curaj, Adelina
AU - Popescu, Alexandra
AU - Zernecke, Alma
AU - Kungl, Andreas J.
AU - Weber, Christian
PY - 2010/11/23
Y1 - 2010/11/23
N2 - Objectives A nonagonist monocyte chemotactic protein-1 (MCP-1/CCL2) mutant (PA508) with increased affinity for glycosaminoglycans and thus competing with CCL2 was evaluated as a candidate for preventing neointima formation or myocardial ischemia/reperfusion injury. Background Myocardial infarction (MI) remains a major cause of death worldwide despite improved interventional and therapeutic options. Therefore, the discovery of drugs that limit restenosis after intervention and post-MI damage remains an important challenge. Methods The function of PA508 was assessed in functional assays in vitro and in mouse models of wire-induced neointima formation and experimental MI. Results PA508 was functionally inactive in CC chemokine receptor 2 (CCR2) binding and calcium influx but inhibited monocyte chemotaxis or transendothelial migration toward CCL2, suggesting that it interferes with CCL2 presentation. In wild-type but not CCR2-deficient mice, PA508 reduced inflammatory leukocyte recruitment without affecting differential leukocyte counts, CCL2 levels, organ function, or morphology, indicating that it specifically attenuates the CCL2-CCR2 axis. Compared with vehicle, daily intraperitoneal injection of PA508 significantly (p <0.05, n = 5) reduced neointimal plaque area and mononuclear cell infiltration in carotid arteries of hyper-lipidemic apolipoprotein E-deficient mice while increasing smooth muscle cell content. In C57BI/6J mice that underwent myocardial ischemia/reperfusion, treatment with PA508 significantly reduced infarction size, monocyte infiltration, and collagen and myofibroblast content in the infarction area and preserved heart function compared with vehicle (p <0.05, n = 4 to 8). Conclusions Here we demonstrate that administration of a rationally designed CCL2 competitor reduced inflammatory monocyte recruitment, limited neointimal hyperplasia, and attenuated myocardial ischemia/reperfusion injury in mice and could therefore be envisioned as a combined therapeutic approach for restenosis and MI. (J Am Coll Cardiol 2010;56:1847-57)
AB - Objectives A nonagonist monocyte chemotactic protein-1 (MCP-1/CCL2) mutant (PA508) with increased affinity for glycosaminoglycans and thus competing with CCL2 was evaluated as a candidate for preventing neointima formation or myocardial ischemia/reperfusion injury. Background Myocardial infarction (MI) remains a major cause of death worldwide despite improved interventional and therapeutic options. Therefore, the discovery of drugs that limit restenosis after intervention and post-MI damage remains an important challenge. Methods The function of PA508 was assessed in functional assays in vitro and in mouse models of wire-induced neointima formation and experimental MI. Results PA508 was functionally inactive in CC chemokine receptor 2 (CCR2) binding and calcium influx but inhibited monocyte chemotaxis or transendothelial migration toward CCL2, suggesting that it interferes with CCL2 presentation. In wild-type but not CCR2-deficient mice, PA508 reduced inflammatory leukocyte recruitment without affecting differential leukocyte counts, CCL2 levels, organ function, or morphology, indicating that it specifically attenuates the CCL2-CCR2 axis. Compared with vehicle, daily intraperitoneal injection of PA508 significantly (p <0.05, n = 5) reduced neointimal plaque area and mononuclear cell infiltration in carotid arteries of hyper-lipidemic apolipoprotein E-deficient mice while increasing smooth muscle cell content. In C57BI/6J mice that underwent myocardial ischemia/reperfusion, treatment with PA508 significantly reduced infarction size, monocyte infiltration, and collagen and myofibroblast content in the infarction area and preserved heart function compared with vehicle (p <0.05, n = 4 to 8). Conclusions Here we demonstrate that administration of a rationally designed CCL2 competitor reduced inflammatory monocyte recruitment, limited neointimal hyperplasia, and attenuated myocardial ischemia/reperfusion injury in mice and could therefore be envisioned as a combined therapeutic approach for restenosis and MI. (J Am Coll Cardiol 2010;56:1847-57)
KW - chemokines
KW - inflammation
KW - leukocyte
KW - myocardial infarction
KW - neointima formation
U2 - 10.1016/j.jacc.2010.04.066
DO - 10.1016/j.jacc.2010.04.066
M3 - Article
C2 - 21087715
SN - 0735-1097
VL - 56
SP - 1847
EP - 1857
JO - Journal of the American College of Cardiology
JF - Journal of the American College of Cardiology
IS - 22
ER -