A framework based on hidden Markov trees for multimodal PET/CT image co-segmentation

Houda Hanzouli-Ben Salah, Jerome Lapuyade-Lahorgue, Julien Bert, Didier Benoit, Philippe Lambin, Angela Van Baardwijk, Emmanuel Monfrini, Wojciech Pieczynski, Dimitris Visvikis, Mathieu Hatt*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

39 Downloads (Pure)
Original languageEnglish
Pages (from-to)5835-5848
Number of pages14
JournalMedical Physics
Volume44
Issue number11
DOIs
Publication statusPublished - Nov 2017

Keywords

  • Bayesian inference
  • computed tomography (CT)
  • hidden Markov trees (HMT)
  • positron emission tomography (PET)
  • segmentation
  • wavelet and contourlet analysis
  • CELL LUNG-CANCER
  • TUMOR DELINEATION
  • F-18-FDG PET
  • CT IMAGES
  • TRACER UPTAKE
  • MODEL
  • RECONSTRUCTION
  • BRAIN
  • CLASSIFICATION
  • QUANTITATION

Cite this