TY - JOUR
T1 - A Dietary Treatment Improves Cerebral Blood Flow and Brain Connectivity in Aging apoE4 Mice
AU - Wiesmann, Maximilian
AU - Zerbi, Valerio
AU - Jansen, Diane
AU - Haast, Roy
AU - Lutjohann, Dieter
AU - Broersen, Laus M.
AU - Heerschap, Arend
AU - Kiliaan, Amanda J.
PY - 2016
Y1 - 2016
N2 - APOE ?4 (apoE4) polymorphism is the main genetic determinant of sporadic Alzheimer's disease (AD). A dietary approach (Fortasyn) including docosahexaenoic acid, eicosapentaenoic acid, uridine, choline, phospholipids, folic acid, vitamins B12, B6, C, and E, and selenium has been proposed for dietary management of AD. We hypothesize that the diet could inhibit AD-like pathologies in apoE4 mice, specifically cerebrovascular and connectivity impairment. Moreover, we evaluated the diet effect on cerebral blood flow (CBF), functional connectivity (FC), gray/white matter integrity, and postsynaptic density in aging apoE4 mice. At 10-12 months, apoE4 mice did not display prominent pathological differences compared to wild-type (WT) mice. However, 16-18-month-old apoE4 mice revealed reduced CBF and accelerated synaptic loss. The diet increased cortical CBF and amount of synapses and improved white matter integrity and FC in both aging apoE4 and WT mice. We demonstrated that protective mechanisms on vascular and synapse health are enhanced by Fortasyn, independent of apoE genotype. We further showed the efficacy of a multimodal translational approach, including advanced MR neuroimaging, to study dietary intervention on brain structure and function in aging.
AB - APOE ?4 (apoE4) polymorphism is the main genetic determinant of sporadic Alzheimer's disease (AD). A dietary approach (Fortasyn) including docosahexaenoic acid, eicosapentaenoic acid, uridine, choline, phospholipids, folic acid, vitamins B12, B6, C, and E, and selenium has been proposed for dietary management of AD. We hypothesize that the diet could inhibit AD-like pathologies in apoE4 mice, specifically cerebrovascular and connectivity impairment. Moreover, we evaluated the diet effect on cerebral blood flow (CBF), functional connectivity (FC), gray/white matter integrity, and postsynaptic density in aging apoE4 mice. At 10-12 months, apoE4 mice did not display prominent pathological differences compared to wild-type (WT) mice. However, 16-18-month-old apoE4 mice revealed reduced CBF and accelerated synaptic loss. The diet increased cortical CBF and amount of synapses and improved white matter integrity and FC in both aging apoE4 and WT mice. We demonstrated that protective mechanisms on vascular and synapse health are enhanced by Fortasyn, independent of apoE genotype. We further showed the efficacy of a multimodal translational approach, including advanced MR neuroimaging, to study dietary intervention on brain structure and function in aging.
U2 - 10.1155/2016/6846721
DO - 10.1155/2016/6846721
M3 - Article
C2 - 27034849
SN - 2090-5904
VL - 2016
JO - Neural Plasticity
JF - Neural Plasticity
M1 - 6846721
ER -