A Data Driven Similarity Measure and Example Mapping Function for General , Unlabelled Data Sets

Damien Lejeune, Kurt Driessens

Research output: Chapter in Book/Report/Conference proceedingConference article in proceedingAcademicpeer-review

Abstract

Deep networks such as autoencoders and deep belief nets are able to construct alternative, and often informative, repre-sentations of unlabeled data by searching for (hidden) structure and correlations between the features chosen to represent the data and combining them into new features that allow sparse representations of the data. These representations have been chosen to often increase the accuracy of further classification or regression accuracy when compared to the original, often human chosen representations. In this work, we attempt an investigation of the relation between such discovered representations found using related but differently repre-sented sets of examples. To this end, we combine the cross-domain comparison capabilities of unsupervised manifold alignment with the unsupervised feature construction of deep belief nets, resulting in an example mapping function that allows re-encoding examples from any source to any target task. Using the t-Distributed Stochastic Neighbour Embedding technique to map translated and real exam-ples to a lower dimensional space, we employ KL-divergence to de-fine a dissimilarity measure between data sets enabling us to measure found representation similarities between domains.
Original languageEnglish
Title of host publicationProceedings of the 22nd European Conference on Artificial Intelligence (ECAI'16)
Pages158-166
Number of pages9
DOIs
Publication statusPublished - 2016

Publication series

SeriesProceedings of the 22nd European Conference on Artificial Intelligence (ECAI'16)

Cite this