TY - JOUR
T1 - A comprehensive longitudinal study of magnetic resonance imaging identifies novel features of the Mecp2 deficient mouse brain
AU - Carli, Sara
AU - Chaabane, Linda
AU - De Rocco, Giuseppe
AU - Albizzati, Elena
AU - Sormonta, Irene
AU - Calligaro, Stefano
AU - Bonizzi, Pietro
AU - Frasca, Angelisa
AU - Landsberger, Nicoletta
PY - 2023/5
Y1 - 2023/5
N2 - Rett syndrome (RTT) is a X-linked neurodevelopmental disorder which represents the leading cause of severe incurable intellectual disability in females worldwide. The vast majority of RTT cases are caused by mutations in the X-linked MECP2 gene, and preclinical studies on RTT largely benefit from the use of mouse models of Mecp2, which present a broad spectrum of symptoms phenocopying those manifested by RTT patients. Neurons represent the core targets of the pathology; however, neuroanatomical abnormalities that regionally characterize the Mecp2 deficient mammalian brain remain ill-defined. Neuroimaging techniques, such as MRI and MRS, represent a key approach for assessing in vivo anatomic and metabolic changes in brain. Being non-invasive, these analyses also permit to investigate how the disease progresses over time through longitudinal studies. To foster the biological comprehension of RTT and identify useful biomarkers, we have performed a thorough in vivo longitudinal study of MRI and MRS in Mecp2 deficient mouse brains. Analyses were performed on both genders of two different mouse models of RTT, using an automatic atlas-based segmentation tool that permitted to obtain a detailed and unbiased description of the whole RTT mouse brain. We found that the most robust alteration of the RTT brain consists in an overall reduction of the brain volume. Accordingly, Mecp2 deficiency generally delays brain growth, eventually leading, in heterozygous older animals, to stagnation and/or contraction. Most but not all brain regions participate in the observed deficiency in brain size; similarly, the volumetric defect progresses diversely in different brain areas also depending on the specific Mecp2 genetic lesion and gender. Interestingly, in some regions volumetric defects anticipate overt symptoms, possibly revealing where the pathology originates and providing a useful biomarker for assessing drug efficacy in pre-clinical studies.
AB - Rett syndrome (RTT) is a X-linked neurodevelopmental disorder which represents the leading cause of severe incurable intellectual disability in females worldwide. The vast majority of RTT cases are caused by mutations in the X-linked MECP2 gene, and preclinical studies on RTT largely benefit from the use of mouse models of Mecp2, which present a broad spectrum of symptoms phenocopying those manifested by RTT patients. Neurons represent the core targets of the pathology; however, neuroanatomical abnormalities that regionally characterize the Mecp2 deficient mammalian brain remain ill-defined. Neuroimaging techniques, such as MRI and MRS, represent a key approach for assessing in vivo anatomic and metabolic changes in brain. Being non-invasive, these analyses also permit to investigate how the disease progresses over time through longitudinal studies. To foster the biological comprehension of RTT and identify useful biomarkers, we have performed a thorough in vivo longitudinal study of MRI and MRS in Mecp2 deficient mouse brains. Analyses were performed on both genders of two different mouse models of RTT, using an automatic atlas-based segmentation tool that permitted to obtain a detailed and unbiased description of the whole RTT mouse brain. We found that the most robust alteration of the RTT brain consists in an overall reduction of the brain volume. Accordingly, Mecp2 deficiency generally delays brain growth, eventually leading, in heterozygous older animals, to stagnation and/or contraction. Most but not all brain regions participate in the observed deficiency in brain size; similarly, the volumetric defect progresses diversely in different brain areas also depending on the specific Mecp2 genetic lesion and gender. Interestingly, in some regions volumetric defects anticipate overt symptoms, possibly revealing where the pathology originates and providing a useful biomarker for assessing drug efficacy in pre-clinical studies.
U2 - 10.1016/j.nbd.2023.106083
DO - 10.1016/j.nbd.2023.106083
M3 - Article
C2 - 36931532
SN - 0969-9961
VL - 180
JO - Neurobiology of Disease
JF - Neurobiology of Disease
M1 - 106083
ER -