Breaking the Time Barrier: Using AI to Map the Evolution of Legal Precedents (GBP 6,000)

Prize: Prize (including medals and awards)Academic


Precedents are essential for the application of the law. A precedent is a judgment or rule (set) made or used in a prior legal case that can be used for deciding a subsequent case. To ensure coherence and high-quality justice, judges, lawyers, and other legal practitioners should know or find precedents. This requirement, as the cornerstone of a just society, is facing increasing challenges from the rapidly growing number of cases. Powerful artificial intelligence tools, like legal (or case) citation network analysis, can assist judges, lawyers, and other legal practitioners in retrieving, ranking, and recommending important relevant
cases, and in synthesising legal evidence from core cases. The application of network analysis in law, however, remains underexplored. This research aims to fill two important research gaps.
1. Dynamicity of law. The importance of precedents in case law can change over time. New cases may refine previous precedents and hence become new landmark cases, or they may lose relevance because of laws that are amended, introduced, or repealed. Therefore, our first aim is to mitigate the time bias of legal citation network analysis and enable the understanding of how court case decisions evolve over time.
2. Reasons for citation. Cases are cited for different purposes in context. Citations for justifying the legal basis play a different role to those used to differentiate from similar cases. Therefore, we also aim to create resources and methods for understanding the meanings of case citations and improving legal citation network analysis with a semantics-rich approach.
Degree of recognitionInternational
Granting OrganisationsThe Royal Society