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This paper studies a dynamic Cournot duopoly in which suppliers have a limited amount of products avail-
able for two consecutive periods. We derive optimal sales strategies and analyze welfare effects with and
without commitment. Under commitment, strategies do not depend on the rival's realized sales. In this
case, there is a unique Nash equilibrium for any allocation of initial supplies and prices increase over time.
Absent commitment, sellers can adjust their supply decision after the first period. In this case, a subgame per-
fect Nash equilibrium does not always exist and prices may decline over time. A more asymmetric allocation
of stocks generally leads to higher first-period prices, whereas the impact on second-period prices is ambig-
uous. The larger firm typically prefers not to commit, whereas the smaller firm is better off under commit-
ment. Commitment generates a higher total surplus and (almost always) a higher consumer surplus. Our
findings thus suggest that market transparency or flexible supply contracts can adversely affect welfare in sit-
uations where production precedes sales and firms face an intertemporal capacity constraint.
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1. Introduction

In his pioneering work Recherches sur les Principes Mathematiques
de la Theorie des Richesses published in 1838, Augustin Cournot
explained his by now famous duopoly theory. In the original version,
Cournot considers the case of two profit-maximizing spring water
suppliers who sell bottles of identical quality at zero costs.1 Both
sellers simultaneously and independently decide how many bottles
to bring to the market on the basis of the belief that the output of
their rival remains constant and themarket clears. The optimal supply
decisions in this case are well understood and would be no different if
firms were to compete repeatedly provided that both have an abun-
dance of resources available. Suppose, however, that spring water
supplies are limited. Specifically, suppose that suppliers interact for a
number of periods and that there is not enoughwater available to sup-
ply the unconstrained Cournot equilibrium output in each period. The
recognition that firms may find themselves confronted with such an
intertemporal capacity constraint generates a number of interesting
questions. What are the optimal sales strategies in this case? How do
output decisions depend on the level and allocation of initial supplies?
What are the implications of optimal supply decisions for welfare? In
this paper, we address these and related questions.

The key characteristic of an intertemporal capacity constraint is
that current supply decisions affect future profit opportunities; sell-
ing more of the stock today leaves less to sell tomorrow and vice
versa. This dynamic trade-off can be found in a wide variety of eco-
nomic situations. Akin to the spring water example, it quite naturally
applies to exhaustible resource markets. For example, oil companies
typically control a limited number of oil fields and current sales put
a restraint on what can be sold in the future. Similarly, in many mar-
kets production is often temporarily given. For instance, a ticket seller
who has tickets for a concert or football match has a choice between
selling these, say, 3 months in advance or around the stadium on the
day of the event instead. Other examples include fishery (under quota
constraints), flight seats, hotel rooms, limited edition goods, fashionable
items, specialized agricultural products, emissions trading, etcetera.
What all these cases have in common is that a seller who attempts to
maximize his profits should not only take account of its rival's quantity
of output, but additionally needs to consider how its current supply de-
cision affects future sales opportunities.

The purpose of this research is to gain understanding of strategic
firm behavior and welfare implications in situations where firms are
capacity-constrained over time. Toward that end, we study a dynamic
Cournot duopoly in which suppliers have a limited amount of prod-
ucts available for two consecutive periods. We distinguish two set-
tings. In the first setting, suppliers commit to their sales strategies,
which means that supply decisions are independent of the rival's

http://dx.doi.org/
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realized sales. For example, sellers may lack information about sales
of competitors so that after the first period it is unclear how much
of the rival's stock has been sold. Also, sellers and buyers may sign
supply contracts specifying desired volumes for each period. In the
second setting, suppliers can adjust their sales strategy after the
first period. This situation corresponds to more transparent markets
and flexible supply contracts.

Summarizing some of our main findings, there is a unique pure-
strategy Nash equilibrium for any allocation of initial supplies under
commitment, whereas under non-commitment a subgame perfect
Nash equilibrium in pure strategies may not exist. With commitment,
prices weakly increase over time and an increase in stocks ceteris
paribus leads to higher profits. By contrast, prices may decline and in-
creasing stocks may lead to lower profits absent commitment. A
more asymmetric allocation of stocks generally leads to higher
first-period prices, whereas the impact on second-period prices is
ambiguous. Larger firms typically prefer not to commit, whereas
commitment is beneficial for smaller firms, society at large and (al-
most always) for buyers. Consequently, our findings suggest that
an increase in market transparency or flexibility of supply contracts
can have a negative effect on welfare.

To our knowledge, our study is among the first to address the im-
pact of intertemporal capacity constraints on optimal sales strategies
and welfare. In fact, the only other paper we are aware of that con-
siders capacity constraints over time is Biglaiser and Vettas (2004).
This paper studies a setting in which two equally sized firms compete
in price for two periods, while facing one or multiple strategic buyers
with unit demand for a durable homogeneous good. Sellers do
not commit to their price choices. Among other things, Biglaiser and
Vettas (2004) establish that in this case there exists no pure-strategy
Nash equilibrium. Moreover, it is shown that buyers are hurt by
their ability to behave strategically and consequently have an incen-
tive to commit to myopic behavior. Our setting is quite different as
we consider quantity competition under both commitment and non-
commitment and explore variations in the level and allocation of ini-
tial stocks. Moreover, in our case, buyers do not behave strategically.
An interesting complementary finding is that consumers are (almost
always) better off under commitment. Thus, our analysis reveals that
buyersmay also have a preference for commitment on the supply side.

There is a rich source of literature on strategicfirmbehavior under ca-
pacity constraints, where capacities are either endogenous or exoge-
nously given and firms compete in price or quantity. Contributions
include, among others, Levitan and Shubik (1972), Kreps and Scheink-
man (1983), Osborne and Pitchik (1986), Bikhchandani and Mamer
(1993), Gabszewicz and Poddar (1997), Besanko and Doraszelski
(2004) and Laye and Laye (2008). Additionally, Saloner (1987) mod-
ifies the Cournot duopoly by considering two production stages before
the market clears and shows that in this case there is a unique subgame
perfect Nash equilibrium. This setting has been extended by Pal (1991,
1996) who allows for cost differences and mixed-strategy equilibria
andKovenock andRoy (1998)who relax the assumption ofmarket clear-
ing. In none of these papers, however, firms face an intertemporal capac-
ity constraint. Thus, the key difference between our work and the
available literature on strategic firm behavior under capacity constraints
is that we consider a setting in which current sales opportunities depend
on past supply decisions.

As the spring water example above illustrates, our study is also relat-
ed to the literature on exhaustible or nonrenewable resources. Theories
in this field date back as far as Hotelling (1931) and have been advanced
by, among others, Lewis and Schmalensee (1980), Reinganum and Sto-
key (1985), Loury (1986), Gaudet and Van Long (1994) and, more re-
cently, Salo and Tahvonen (2001). The majority of literature in this area
assumes commitment and, as far as results are comparable, our findings
are similar. As to non-commitment, Reinganum and Stokey (1985) con-
sider oligopoly extraction of a common property resource and show that
the length of the commitment period can have a major impact on
equilibrium firm behavior. Salo and Tahvonen (2001) show thatmarkets
for exhaustible resources can becomemore competitive over time absent
commitment as rising prices may attract additional suppliers.

This paper proceeds as follows. The next section introduces
the Cournot duopoly model with intertemporal capacity constraints.
Section 3 examines strategic firm behavior under commitment and
non-commitment. Section 4 uses the optimal sales strategies to explore
the welfare implications for consumers and society at large. Section 5
concludes. All proofs are provided in Appendix A. For ease of reading,
most of the computational details are relegated to Appendices B and C.

2. Model

Consider an industry in which two profit-maximizing firms, i=1,
2, have a fixed and finite amount of a homogeneous good denoted by
Si≥0. As these products have been produced (or bought) in advance,
production costs are sunk. Given their stocks, both sellers compete in
quantity for two consecutive periods. The quantities sold by firm i in
period 1 and period 2 are respectively denoted by qi and ri, with qi+
ri≤Si. Firms may have residual supply at the end of the second period.
To keep the analysis tractable, we assume linear market demand. Spe-
cifically, inverse demand in each period is given by

P Qð Þ ¼ 1−Q ;

where Q=q1+q2 in the first and Q=r1+r2 in the second period.
Second-period profits are discounted at a common discount factor
δ∈(0, 1].

In the following, we consider two settings. In the first setting,
firms commit to a sales strategy. That is, both unconditionally deter-
mine how many products to offer in each period. In particular, this
implies that the supply decision of a firm in period 2 is not affected
by the first-period sales of its rival. This may be due to a lack of (or
lag in) relevant information about sales and profits. For example,
profits made in previous periods may not yet be available when de-
ciding on current quantities of output. Alternatively, volumes of out-
put may have been specified in advance by means of a supply
contract. Formally, firm i's strategy space under commitment is
given by Γi ¼ qi; rið Þ∈R2

þ
� ��qi þ ri≤Sig. In the second setting, sellers

do not commit to their sales strategy. In this case, a firm's optimal
supply decision in the second period is potentially affected by the re-
alized sales of its rival in the first period. Thus, second-period strate-
gies are conditional on first-period sales. We define Fi={fi : [0, S1]×[0,
S2]→ [0, Si]|qi+ fi(q1, q2)≤Si} as the set of functions that assign a fea-
sible second-period quantity of output to every possible combination
of first-period sales. Firm i's strategy space is then Σi=[0, Si]×Fi.

3. Strategic firm behavior

3.1. Commitment

Under commitment, a firm determines its sales strategy indepen-
dent of its rival's realized sales. Given strategies (q1, r1)∈Γ1 and (q2,
r2)∈Γ2, firm i's profit is given by

Πi q1; r1; q2; r2ð Þ ¼ qiP qi þ qj
� �

þ δriP ri þ rj
� �

:

In choosing its sales path (qi, ri), firm i takes the sales path (qj, rj) of
firm j as given (where the subscripts i and j are used to indicate the
two competitors). Firm i therefore solves the following constrained
maximization problem:

max
qi ;ri

Πi q1; r1; q2; r2ð Þ
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Fig. 1. Equilibrium outcome regions under commitment and the number of active firms
in each period for δ=0.5.
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subject to

qi; ri≥0 and qi þ ri ≤ Si:

The result is a continuous best response function γi∈Γi:

γi qj; rj
� �

¼

Si;0ð Þ

(
if ½qj−δrjb1−δ−2Si;
qj þ rj≤2−2Si and qj; rj≤1�
or qj≤1−2Si and rjN1
h i

0; Sið Þ

(
if ½qj−δrjN1−δþ 2δSi;
qj þ rj≤2−2Si and qj; rj≤1�
or qjN1 and rj≤1−2Si
h i

1−δþ 2δSi−qjþδrj
2þ 2δ

;
2Si−1þδþqj−δrj

2þ2δ

� � ( if 1−δ−2Si≤qj−δrj≤
1−δþ 2δSi;
qj þ rj≤2−2Si and qj; rj≤1

1
2
−1

2
qj;

1
2
−1

2
rj

� � n
if qj þ rjN2−2Si
and qj; rj≤1

1
2
−1

2
qj;0

� � n
if 1−2Sibqj≤1

and rjN1

0;
1
2
−1

2
rj

� � n
if 1−2Sibrj≤1

and qjN1

0;0ð Þ if qj; rjN1:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

These seven cases are mutually exclusive and the best response
against (qj, rj) is unique. A pair of strategies (q1�, r1�, q2�, r2�) constitutes
a Nash equilibrium if and only if

Π1 q�1; r
�
1; q

�
2; r

�
2ð Þ≥Π1 q1; r1; q

�
2; r

�
2ð Þ for all q1; r1ð Þ∈ Γ1;

Π2 q�1; r
�
1; q

�
2; r

�
2ð Þ≥Π2 q�1; r

�
1; q2; r2ð Þ for all q2; r2ð Þ∈ Γ2;

or, equivalently, γ1(q2�, r2�)=(q1�, r1�) and γ2(q1�, r1�)=(q2�, r2�).
For any given initial combination (S1, S2, δ), there is a unique Nash

equilibrium. These equilibria are specified in Table 1 and illustrated in
Table 1
Equilibria with commitment.

Parameter conditions Period 1 Period 2

(Xll
c) 0≤S1b

1
2
−1

2
S2−

1
2
δ

0≤S2b
1
2
−1

2
S1−

1
2
δ

qc1 ¼ S1

qc2 ¼ S2

rc1 ¼ 0

rc2 ¼ 0

(Xlm
c ) 0≤S1b

1
3
−1

3
δ

1
2
−1

2
δ−1

2
S1≤S2≤1−1

2
S1

qc1 ¼ S1

qc2 ¼ 1−S1−δþ 2δS2
2þ 2δ

rc1 ¼ 0

rc2 ¼ 2S2 þ S1−1þ δ
2þ 2δ

(Xml
c ) 1

2
−1

2
δ−1

2
S2≤S1≤1−1

2
S2

0≤S2b
1
3
−1

3
δ

qc1 ¼ 1−δþ 2δS1−S2
2þ 2δ

qc2 ¼ S2

rc1 ¼ 2S1 þ S2−1þ δ
2þ 2δ

rc2 ¼ 0

(Xlh
c )

0≤S1b
1
3
−1

3
δ

1−1
2
S1bS2

qc1 ¼ S1

qc2 ¼ 1
2
−1

2
S1

rc1 ¼ 0

rc2 ¼ 1
2

(Xhl
c )

1−1
2
S2bS1

0≤S2b
1
3
−1

3
δ

qc1 ¼ 1
2
−1

2
S2

qc2 ¼ S2

rc1 ¼ 1
2

rc2 ¼ 0

(Xmm
c ) 1

3
−1

3
δ≤S1≤1−1

2
S2

1
3
−1

3
δ≤S2≤1−1

2
S1

qc1 ¼ 1−δþ 3δS1
3þ 3δ

qc2 ¼ 1−δþ 3δS2
3þ 3δ

rc1 ¼ 3S1−1þ δ
3þ 3δ

rc2 ¼ 3S2−1þ δ
3þ 3δ

(Xmh
c ) 1

3
−1

3
δ≤S1≤

2
3

1−1
2
S1bS2

qc1 ¼ 1−δþ 3δS1
3þ 3δ

qc2 ¼ 2þ 4δ−3δS1
6þ 6δ

rc1 ¼ 3S1−1þ δ
3þ 3δ

rc2 ¼ 4þ 2δ−3S1
6þ 6δ

(Xhm
c ) 1−1

2
S2bS1

1
3
−1

3
δbS2≤

2
3

qc1 ¼ 2þ 4δ−3δS2
6þ 6δ

qc2 ¼ 1−δþ 3δS2
3þ 3δ

rc1 ¼ 4þ 2δ−3S2
6þ 6δ

rc2 ¼ 3S2−1þ δ
3þ 3δ

(Xhh
c ) 2

3
bS1

2
3
bS2

qc1 ¼ 1
3

qc2 ¼ 1
3

rc1 ¼ 1
3

rc2 ¼ 1
3

Fig. 1. The figure shows combinations of S1, S2 at a given δ.2 The super-
script ‘c’ stands for commitment and the subscript indicates available
supply of respectively firm i and firm j, where ‘l’ stands for low, ‘m’ for
medium and ‘h’ for high. Additionally, Fig. 1 depicts the number of
firms active in each period. Specifically, N1/N2/Nr indicates respective-
ly the number of firms with strictly positive sales in the first period,
the number of firms with strictly positive sales in the second period
and the number of firms with residual supply at the end of the second
period.

Fig. 1 reveals that the number of firms active in each period is pos-
itively correlated with the amount of available products, all else
equal. If firm 1 has limited supplies (as in regions Xll

c, Xlm
c , and Xlh

c ),
then it will sell all its products in the first period. It is important to
highlight that these regions are non-empty only for discount factors
strictly below one. Discounting of second-period profits provides
firms with an incentive to sell as soon as possible. For sufficiently
low stocks, marginal revenue in the first period exceeds marginal rev-
enue in the second period as long as δ is not too high. Therefore, sell-
ing everything in the first period is optimal in this case. In the regions
Xml
c , Xmm

c , and Xmh
c , firm 1 has a moderate number of products avail-

able. Here, profit-maximization requires a division of sales such that
marginal revenue in the first period equals marginal revenue in the
second period. In the remaining regions (i.e., Xhl

c , Xhm
c and Xhh

c ), firm
1 has a large stock and faces no capacity constraint. This implies
that profits are maximized for each period separately. Moreover,
there is residual supply at the end of the second period. A similar rea-
soning applies to the equilibrium strategy of firm 2.3

In light of the above analysis, one question of interest concerns the
development of prices. The next proposition shows that prices do not
decline under commitment.

Proposition 1. In equilibrium, price weakly increases over time.

Thus, total sales in the second period never exceed total sales in
the first period. In fact, a firm will choose its sales path in such a
way that marginal revenues for both periods are the same. The only
exception is when its capacity is severely limited. In that case, mar-
ginal revenue in period 1 always exceeds marginal revenue in period
2 A change in δ affects the size, but not the shape of the equilibrium regions.
3 Notice that in region Xhh

c none of the firms is capacity-constrained. As a result, both
optimally choose the unconstrained Cournot equilibrium quantity 1

3 in each period.
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Second-period equilibrium outcomes.

Ti Tj ri rj Profits i Profits j

(Yhh) N
1
3

N
1
3

1
3

1
3

1
9

1
9

(Ylh) ≤1
3

N
1−Ti
2

Ti
1−Ti
2

Ti
1−Ti
2

� � 1−Ti
2

� �2

(Yhl) N
1−Tj
2

≤1
3

1−Tj
2

Tj
1−Tj

 �2

4
Tj

1−Tj
2

� �

(Yll) ≤1−Tj
2

≤1−Ti
2

Ti Tj Ti(1−Ti−Tj) Tj(1−Ti−Tj)
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2 and, as a consequence, it is optimal to sell all products in the first
period.

Let us finally study the impact of the level and allocation of initial
stocks. The next result shows that it is typically beneficial for a firm to
have more in stock, all else equal.

Proposition 2. An increase in Sileads to a weak increase in firm i's equi-
librium profit.

The following proposition summarizes how the division of initial
supplies affects equilibrium outcomes.

Proposition 3. Given aggregate stock S1+S2, an increase in |S1−S2|
leads to a weak decrease in first-period aggregate equilibrium sales
and a weak increase of first-period equilibrium price. Additionally, it
leads to (i) a decrease in second-period aggregate equilibrium sales
and an increase of second-period equilibrium price in regions Xmh

c and
Xhm
c and (ii) an increase in second-period aggregate equilibrium sales

and a decrease of second-period equilibrium price in regions Xlm
c and

Xml
c . It has no effect on second-period aggregate equilibrium sales and

second-period equilibrium price in the other regions.

A more asymmetric allocation of stocks leads to higher prices in
the first period. In fact, the highest first-period price is obtained in
the extreme case in which one firm effectively operates as a monop-
olist by controlling all initial supplies. Yet, the effect on second-period
prices is ambiguous. In particular, observe that prices decline in re-
gions Xlm

c and Xml
c . In these cases, the smaller firm sells all its products

in period 1. A (relative) growth in stock of the larger firm then yields
a higher sales level in period 2, which induces a lower second-period
market price.

3.2. Non-commitment

Let us now consider the case where sales strategies in the second
period depend on realized and observed first-period sales. Our objec-
tive is to derive and analyze the subgame perfect Nash equilibria of the
game absent commitment. Toward that end, we start by evaluating
the Nash equilibria in all possible second period subgames. Consider
the subgame q=(q1, q2) in period 2 that results from first-period
sales (q1, q2). Let firm i's second-period stock be denoted by Ti=Si−
qi and let σiq:[0, Tj]→ [0, Ti] be firm i's best response function in sub-
game q. Thus, for a given sales level rj, firm i solves:

max
ri

ri P ri þ rj
� �

subject to

0≤ ri≤Ti:

Firm i's best response in period 2 is then given by

σiq rj
� �

¼
Ti if 0≤Ti≤

1
2
−1

2
rj;

max 0;
1
2
−1

2
rj

� 	
otherwise:

8>><
>>:

Quantities (r1�, r2�) are a Nash equilibrium of the second-period
subgame q if and only if σ1q(r2�)=r1

� and σ2q(r1�)=r2
�. Each subgame

q has a unique Nash equilibrium as specified in Table 2 and illustrated
in Fig. 2.4 In region Yhh, both firms have sufficient residual stock to
supply the unconstrained profit-maximizing quantity. In regions Yhl

and Ylh, only one supplier is capacity-constrained. In region Yll, both
4 This figure is similar to Fig. 1 in Krishnan and Röller (1993). Their Stage 5 problem
coincides with our second-period subgame.
firms' capacities are binding and they bring their entire stock to the
market.

The equilibrium action of firm i in period 2 is given by the function
f i
�:

f �i qi; qj
� �

¼

1
3

if Ti;Tj N
1
3
;

1
2
−1

2
Tj if TiN

1
2
−1

2
Tj and Tj≤

1
3
;

Ti if Ti≤
1
3

or Tj≤1−2Ti:

8>>>>><
>>>>>:

ð1Þ

We now replace the second-period subgames with the second-
period outcomes as induced by f �. The result is a one-period reduced
game in which the payoffs are given by

ΠR
i qi; qj
� �

¼ Πi qi; qj; f
�
i qi; qj
� �

; f �j qi; qj
� �� �

; 0≤qi≤ Si;0≤qj≤ Sj:

The reduced profit function of firm i is then specified as follows.

ΠR
i qi; qj
� �

¼ qi 1−qi−qj
� �

þ

1
9
δ if TiN

1
3

and TjN
1
3
; Yhhð Þ

1
2
δTi 1−Tið Þ if 1−2TjbTi≤

1
3
; Ylhð Þ

1
4
δ 1−Tj
� �2 if TiN

1
2
−1

2
Tj and Tj≤

1
3
; Yhlð Þ

δTi 1−Ti−Tj
� �

if Ti≤min
1
2
−1

2
Tj;1−2Tj

� 	
: Yllð Þ

8>>>>>>>>>><
>>>>>>>>>>:

ð2Þ
Ti

Fig. 2. Second-period equilibrium outcome regions for δ=0.5.



Table 3
Equilibria without commitment.

Parameter conditions Period 1 Period 2

(Xll
nc) 0≤ S1b

1
2
−1

2
δ−1

2
S2

0≤ S2b
1
2
−1

2
δ−1

2
S1

qnc1 ¼ S1
qnc2 ¼ S2

rnc1 ¼ 0
rnc2 ¼ 0

(Xlm
nc) 0≤ S1b

1
3

1−δð Þ
1
2
−1

2
δ−1

2
S1≤S2≤1−1

2
S1

qnc1 ¼ S1

qnc2 ¼1−S1þ2δS2−δ
2þ 2δ

rnc1 ¼ 0

rnc2 ¼2S2−1þS1þδ
2þ 2δ

(Xml
nc) 1

2
−1

2
δ−1

2
S2≤S1≤1−1

2
S2

0≤S2b
1
3

1−δð Þ

qnc1 ¼1−S2þ2δS1−δ
2þ2δ

qnc2 ¼ S2

rnc2 ¼2S1−1þS2þδ
2þ 2δ

rnc2 ¼ 0

(Xlh
nc) 0≤S1b

1
3

1−δð Þ

S2N1−
1
2
S1

qnc1 ¼ S1

qnc2 ¼ 1
2
−1

2
S1

rnc1 ¼ 0

rnc2 ¼ 1
2

(Xhl
nc)

S1N1−
1
2
S2

0≤S2b
1
3

1−δð Þ

qnc1 ¼ 1
2
−1

2
S2

qnc2 ¼ S2

rnc1 ¼ 1
2

rnc2 ¼ 0

(Xmm
nc a) 1

3
1−δð Þ≤ S1 ≤β1

1
3

1−δð Þ≤ S2 ≤β2

qnc1 ¼ 1−δþ 3δS1
3þ 3δ

qnc2 ¼ 1−δþ 3δS2
3þ 3δ

rnc1 ¼ 3S1−1þ δ
3þ 3δ

rnc2 ¼ 3S2−1þ δ
3þ 3δ

(Xmm
nc b) β3 b S1≤1−1

2
S2

β4 b S2≤1−1
2
S1

(Xmh
nc ) 1

3
1−δð Þ≤ S1≤

2
3
−1

9
δ

S2 Nβ5

qnc1 ¼ 1−δþ 2δS1
3þ 2δ

qnc2 ¼ 2þ 3δ−2δS1
6þ 4δ

rnc1 ¼ 3S1−1þ δ
3þ 2δ

rnc2 ¼ 4þ δ−3S1
6þ 4δ

(Xhm
nc ) S1 Nβ6

1
3

1−δð Þ≤ S2 ≤
2
3
−1

9
δ

qnc1 ¼ 2þ 3δ−2δS2
6þ 4δ

qnc2 ¼ 1−δþ 2δS2
3þ 2δ

rnc1 ¼ 4þ δ−3S2
6þ 4δ

rnc2 ¼ 3S2−1þ δ
3þ 2δ

(Xm′h
nc ) 2

3
−1

9
δb S1≤

2
3

S2Nβ7

qnc1 ¼ S1−
1
3

qnc2 ¼ 2
3
−1

2
S1

rnc1 ¼ 1
3

rnc2 ¼ 1
3

(Xhm′
nc ) S1 Nβ8

2
3
−1

9
δb S2 ≤

2
3

qnc1 ¼ 2
3
−1

2
S2

qnc2 ¼ S2−
1
3

rnc1 ¼ 1
3

rnc2 ¼ 1
3

(Xhh
nc) S1N

2
3

S2N
2
3

qnc1 ¼ 1
3

qnc2 ¼ 1
3

rnc1 ¼ 1
3

rnc2 ¼ 1
3

(XØ
nc) All other values

of (S1, S2, δ)
No equilibrium

Explanation of the symbols

β1
7
6
−S2−

1
6
δþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δð Þ 1þ 1

2
δ

� �s

1þ δ
5
6

þ 1
6
δ−S2

� �

β2
7
6

−S1−
1
6

δþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δð Þ 1þ 1

2
δ

� �s

1þ δ
5
6

þ 1
6
δ−S1

� �

β3

4þ 5 1
2 δ−1

2
δ2−3δS2

6þ 6δ

β4

4þ 5 1
2 δ−1

2
δ2−3δS1

6þ 6δ

β5

7þ 6 1
2 δþ 3

2
δ2−6S1−5δS1−δ2S1 þ 5þ 5δ−2δS1ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δð Þ 1þ 1

2
δ

� �s

6þ 7δþ 2δ2 þ 6þ 4δð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δð Þ 1þ 1

2
δ

� �s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� �s
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A pair of strategies (q1�, q2�) is a Nash equilibrium of the reduced
game if and only if it holds that

ΠR
1 q�1; q

�
2ð Þ≥ΠR

1 q1; q
�
2ð Þ; for all q1∈ 0; S1½ �;

ΠR
2 q�1; q

�
2ð Þ≥ΠR

2 q�1; q2ð Þ; for all q2∈ 0; S2½ �:

A Nash equilibrium (q1�, q2�) of the reduced game corresponds to a
subgame perfect Nash equilibrium (q1�, f1�, q2�, f2�) of the entire game.

Let us now have a closer look at the reduced best responses and
the subgame perfect Nash equilibria. The computational details and
derivations can be found in Appendices B and C. To begin, in equilib-
rium none of the firms will sell in excess of the unconstrainedmonop-
oly output.

Lemma 4. For any Nash equilibrium (q1�, q2�) of the reduced game, it

holds that q�i ; q
�
j ≤ 1

2.

In the following, let σ i
R(qj) denote the reduced best response of

firm i against qj. Quantities (q1�, q2�) are a Nash equilibrium of the re-
duced game if and only if qi�∈σ i

R(qj�) and qj
�∈σ j

R(qi�). Given qj, the re-
duced profit function is continuous, albeit not always concave. Thus,
the reduced best response against qj always exists, but need not be
unique. The reduced best response correspondence is upper hemi-
continuous, but may not be convex-valued. As a result, a subgame
perfect Nash equilibrium in pure strategies may not always exist,
which indeed turns out to be the case for some combinations of Si,
Sj and δ.

Combinations of (S1, S2, δ) can be partitioned in 12 regions. In each
region in which there exists an equilibrium, the equilibria share the
same qualitative features and are differentiable functions of S1, S2,
and δ. The equilibrium regions and outcomes are specified in
Table 3 and illustrated in Fig. 3. The superscript ‘nc’ stands for non-
commitment. As before, the subscript indicates available supply of re-
spectively firm i and firm j, where ‘l’ stands for low, ‘m’ for medium,
‘m′’ for medium-high and ‘h’ for high.

As suggested by Fig. 3, the 12 regions are mutually exclusive. This
property holds in general.

Theorem 5. There is at most one subgame perfect Nash equilibrium for
each combination of S1, S2, and δ.

In some cases, an equilibrium does not exist.5

Theorem 6. For each δ, there is a set of stock levels (S1, S2) with non-
empty interior for which an equilibrium does not exist.

Akin to the commitment setting, Fig. 3 shows that the number of
active firms in each period increases for larger initial supplies. Yet,
the price development may be different. By Proposition 1, we know
that prices do not decline over time under commitment. If the first-
period price would exceed the second-period price, then sellers would
have an incentive to transfer a part (or all) of their second-period out-
put to period 1. As the next result shows, thismay no longer hold absent
commitment.

Proposition 7. In regions Xnc
ll ; Xnc

lm; Xnc
lh ; Xnc

hl ; Xnc
mm and Xhh

nc, the equi-
librium price weakly increases over time. For each δ, there is a set of
stock levels (S1, S2)∈Xmh

nc ∪Xm′h
nc ∪Xhm

nc ∪Xhm′
nc with non-empty interior
5 To be precise, a pure equilibrium may not exist. As the reduced strategy spaces are
nonempty compact subsets of R and the payoff functions Πi

R(qi, qj) are continuous,
there will be a mixed equilibrium. See Glicksberg (1952).

β6

7þ 6 1
2 δþ 3

2
δ2−6S2−5δS2−δ2S2 þ 5þ 5δ−2δS2ð Þ 1þ δð Þ 1þ 1

2
δ

6þ 7δþ 2δ2 þ 6þ 4δð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δð Þ 1þ 1

2
δ

� �s

β7
10þ 6δ−7S1−3δS1

8þ 6δ

β8
10þ 6δ−7S2−3δS2

8þ 6δ
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Fig. 3. Equilibrium outcome regions under non-commitment and the number of active
firms in each period for δ=0.5.
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such that the equilibrium price strictly decreases over time. In particular,
the equilibrium price strictly decreases over time if and only if SibSj and

2−2δ
3−2δ

≤Sib
2
3
−1

9
δ;

Sj N

7þ 6
1
2
δþ3

2
δ2−6Si−5δSi−δ2Siþ 5þ 5δ−2δSið Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þδð Þ 1þ1

2
δ

� �s

6þ 7δþ 2δ2 þ 6þ 4δð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δð Þ 1þ 1

2
δ

� �s

or

2
3
−1

9
δb Sib

2
3
;

Sj N
10þ 6δ−7Si−3δSi

8þ 6δ
:

In those cases where prices decline over time, there is one firm
with a large initial supply and one firm with a medium-sized stock.
The larger firm faces no capacity constraint and chooses its optimal
quantity of output for each period separately given the sales level of
the smaller supplier. By contrast, the smallerfirm is capacity-constrained
in the second period (i.e., its second-period supply is less than 1/3). To
see why a price decline may occur in equilibrium, note that the larger
firm has no incentive to adjust its sales strategy as it responds optimally
in each period. In particular, as the smaller firm faces a capacity con-
straint in the second period, the larger firm is unable to induce a reduc-
tion in its rival's second-period sales. As with commitment, the smaller
firmmight be willing to transfer a part (or all) of its second-period sup-
ply to thefirst period. However, absent commitment, such a transferwill
trigger a response by the larger firm. Specifically, the larger firm will in-
crease its second-period sales, which leads to a lower second-period
price. This reaction by the larger firm renders an adjustment in the
smaller firm's sales strategy unprofitable.

As in the commitment setting, we next evaluate the impact of the
level and allocation of initial stocks. Note that the profit function is
continuous on the domain of (Si, Sj, δ) for which an equilibrium exists.
Using the derivatives of equilibrium profits, it is easily shown that an
increase in stocks leads to higher profits within each equilibrium re-
gion. However, as the next result shows, an increase in initial supplies
may still have an adverse effect on profits. Thus, equilibria may not be
“destroy-proof”.

Proposition 8. An increase in Si, ceteris paribus, leads to a weak in-
crease of firm i′s equilibrium profit as long as the increase does not
change the equilibrium outcome region. If an increase in Si does change
the equilibrium outcome region, then there are combinations of Si, Sj
and δ such that the increase in Si leads to a strict decrease in firm i′s equi-
librium profit.

Let us finally study the consequences of an increase in the differ-
ence of initial supplies.

Proposition 9. Given aggregate stock S1+S2, an increase in |S1−S2|
leads to a weak decrease in first-period aggregate equilibrium sales
and a weak increase of first-period equilibrium price. Additionally, it
leads to (i) a decrease in second-period aggregate equilibrium sales
and an increase of second-period equilibrium price in regions Xmh

c and
Xhm
c and (ii) an increase in second-period aggregate equilibrium sales

and a decrease of second-period equilibrium price in regions Xlm
c and

Xml
c . It has no effect on second-period aggregate equilibrium sales and

second-period equilibrium price in the other regions.

As under commitment (see Proposition 3), a more asymmetric al-
location of supplies leads to weakly higher first-period prices, where-
as the impact on second-period prices is ambiguous.

3.3. Comparison

The above analysis reveals two major differences between strate-
gic firm behavior under commitment and non-commitment. First,
prices may decline over time only when firms do not commit to
their sales strategies. Second, larger initial supplies may have a nega-
tive impact on firm profits only under non-commitment. Let us now
have a closer look at how both regimes compare.

To begin, equilibrium sales are the same for both settings in quite
a few cases.

Proposition 10. For each (S1, S2, δ)∈Xll
nc∪Xlm

nc∪Xml
nc∪Xlh

nc∪Xhl
nc∪Xmm

nc ∪
Xhh
nc, equilibrium sales under commitment and non-commitment coincide.

There always exists an equilibrium when S1=S2. As in this case
(S1, S1, δ)∈Xll

nc∪Xmm
nc ∪Xhh

nc and (S1, S1, δ)∈Xll
c∪Xmm

c ∪Xhh
c , the next

result follows immediately.

Corollary 11. If firms 1 and 2 are symmetric, then equilibrium sales
under commitment and non-commitment coincide.

The story is different when (Si, Sj, δ)∈Xmh
nc ∪Xhm

nc ∪Xm′h
nc ∪Xhm′

nc , i.e.,
when there is one firm with a large stock and one firm with a medium-
sized stock. In these cases, the first-period equilibrium price under
non-commitment weakly exceeds the first-period equilibrium price
under commitment, whereas the opposite holds for second-period equi-
librium prices.

Proposition 12. For each (S1, S2,δ)∉XØ
nc, the first-period equilibrium

price under non-commitment is weakly higher than the first-period equi-
librium price under commitment and the second-period equilibrium
price under non-commitment is weakly lower than the second-period
equilibrium price under commitment. The opposite relationship holds
for per-period aggregate sales.

The next result shows that the largerfirm typically prefers not to com-
mit to its sales strategy, whereas the smaller firm prefers commitment.

Proposition 13. For each (S1, S2,δ)∉XØ
nc, the change in equilibrium out-

come from the commitment case to the non-commitment case is to the
advantage of the larger firm and to the disadvantage of the smaller firm.

The intuition underlying this result is the following. Suppose that
both sellers would choose their commitment equilibrium quantities
under non-commitment. Given the sales strategy of the smaller
firm, the larger firm has no incentive to deviate as it chooses the
per-period optimal output level. By contrast, the smaller firm does
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have an incentive to adjust its supply strategy. Specifically, it will
lower its first-period supply so as to be able to boost second-period
sales. As the products are strategic substitutes, this in turn will induce
the larger firm to reduce its second-period supply. This causes a price
increase in both periods, which is beneficial for the smaller firm as it
still sells all its products.

Yet, the larger firm will naturally anticipate this adjustment by in-
creasing its first-period supply and, as we are outside region XØ

nc, an-
other equilibrium is reached. Like for the smaller firm, the total
amount of sales for the larger supplier is the same in both equilibria.
Compared to the commitment setting, the smaller firm sells more of
its stock in the second period, whereas the larger firm increases its
first-period sales. By Proposition 12, we know that first-period prices
are higher and second-period prices are lower absent commitment.
Consequently, the larger firm typically prefers not to commit, where-
as the smaller firm is better off under commitment.

4. Welfare analysis

In the previous section, we have derived optimal sales strategies
under commitment and non-commitment. Let us now direct our atten-
tion to thewelfare implications of both cases. As towelfare, questions of
interest are: What is the impact of an increase in capacity on consumer
surplus and total surplus? How does the allocation of available capacity
affect consumerwelfare and thewelfare of society at large? How iswel-
fare affected by whether or not firms commit to a particular sales strat-
egy? In the following, we address these questions in turn.

To begin, note that in the current setting consumer and total sur-
plus are given by, respectively,

CS ¼ 1
2

q1 þ q2ð Þ2 þ 1
2
δ r1 þ r2ð Þ2;

and

TS ¼ q1 þ q2ð Þ 1−1
2

q1 þ q2ð Þ
� �

þ δ r1 þ r2ð Þ 1−1
2

r1 þ r2ð Þ
� �

:

Let us now first consider the effect of an increase in capacity on
consumer welfare. The next proposition evaluates the impact of a
growth in stocks on consumer surplus under commitment.

Proposition 14. Commitment

An increase in stock for at least one firm leads to a weakly higher
equilibrium consumer surplus.

Thus, buyers typically benefit from an increase in the number of
available products when firms commit to their sales strategy. By con-
trast, an increase in stocks may adversely affect consumer welfare ab-
sent commitment.

Proposition 15. Non-commitment

Within a given equilibrium outcome region, an increase in Si, ceteris
paribus, leads to a weakly higher equilibrium consumer surplus. For some
combinations of Si, Sj and δ, a strict increase in Si changes the equilibrium
outcome region. This may lead to a strict fall in equilibrium consumer
surplus.

These results reveal that consumers often gain from an increase in
potential supply. A notable exception is when the increase in stock
leads to a new equilibrium outcome region that is reached by moving
through the non-equilibrium zone (see Fig. 3).

The next issue to consider is how the allocation of initial supplies af-
fectswelfare. By Propositions 3 and 9,we know that a larger difference in
capacitymay have different effects on second-period sales. It is therefore
a priori unclear howan increase in |S1−S2| affects consumerwelfare. Yet,
as the next result shows, this effect is unambiguously negative.
Proposition 16. For a given aggregate stock S1+S2, an increase in |S1−
S2| leads to a weakly lower equilibrium consumer surplus.

Buyers commonly benefit from a more equal division of potential
supplies. An increasing difference in production capacity allows the
larger firm to more closely mimic a monopolist, which results in
lower output and higher prices. Notice that this is independent of
whether or not suppliers commit to their sales strategies.

As to social welfare, results are comparable. That is to say, an in-
crease in capacity for at least one firm leads to a weakly higher equi-
librium total surplus under commitment. Yet, if firms do not commit
to their sales strategies, then a growth in stocks may induce a de-
crease in total welfare provided that it changes the equilibrium out-
come region. Moreover, a more asymmetric allocation of available
supplies leads to a weakly lower equilibrium total surplus.

A final issue to consider concerns the preferences of consumers,
firms and the social planner. Do they prefer commitment to sales strat-
egies or not? Onewould expect a priori that commitment has amitigat-
ing effect on competition, which is typically to the advantage of firms
and to the disadvantage of consumers and society as a whole. Indeed,
given an unequal division of stocks, the smaller firm prefers commit-
ment. Yet, the larger firm prefers non-commitment as it provides
more opportunities for exploiting its power. Specifically, as shown in
Proposition 12, non-commitment may result in a higher first-period
price and a lower second-period price. Due to discounting, consumers
therefore usually prefer commitment over non-commitment.

Proposition 17. For every (S1, S2, δ), such that (S1, S2, δ)∉XØ
nc andδ≤24

25
,

consumers prefer commitment over non-commitment. If δN
24
25

, there are

combinations of (S1, S2, δ) for which consumers prefer non-commitment.

The preference for commitment is even stronger for a social planner.

Proposition 18. Total surplus is higher under commitment than under
non-commitment.

Our findings thus reveal that in situations where firms face an
intertemporal capacity constraint, transparency of sales or flexible
supply contracts can have a negative effect on welfare.

5. Concluding remarks

In a wide variety of industries, production precedes sales and sup-
plies are (temporarily) given. In these types of situations, sellers may
find themselves confronted with an intertemporal capacity constraint.
The critical feature of such a constraint is that current supply decisions
affect future profit opportunities; selling more today leaves less to sell
tomorrow and vice versa. To gain understanding of the impact of inter-
temporal capacity constraints on strategic firm behavior and welfare,
we have studied a two-period Cournot duopoly in which suppliers
have a limited amount of products available. In analyzing optimal sup-
ply decisions, we have made a distinction between whether or not
sellers commit to their sales strategies. Under commitment, strategies
do not depend on the rival's realized sales, whereas without commit-
ment sellers can adjust their supply decision after the first period.

Let us summarize some of our main findings. With commitment,
there is a unique Nash equilibrium for any allocation of stocks and
prices weakly increase over time. Absent commitment, a subgame per-
fect Nash equilibriumdoes not always exist and pricesmay decline over
time. Amore unequal division of initial supplies leads to higher first-pe-
riod prices, but the effect on second-period prices is ambiguous. The dif-
ference between commitment and non-commitment is most
pronounced when only one firm is capacity-constrained. In this case,
the larger firm is better off absent commitment, whereas the smaller
firmprefers commitment. Commitment to sales strategies is (almost al-
ways) beneficial for consumers and always leads to a higher total
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surplus. Thus, an increase in the transparency of sales and flexibility of
supply contracts may adversely affect welfare in industries where
firms cannot adjust production instantly to per-period demand.

We have addressed the impact of intertemporal capacity con-
straints in the simplest possible setting. Clearly, there are some po-
tentially interesting extensions. For instance, we have limited our
analysis to two periods and one may wonder whether our main find-
ings still hold in a multi-period model. Another question of interest is
how robust our results are to more general demand specifications.
Moreover, it seems natural to explore similar issues in a setting
where firms compete in price rather than quantity. As our analysis re-
veals, however, one may expect arduous calculations when pursuing
these types of questions. The main challenge is therefore to find a
more general model specification that is still analytically tractable.
We leave this issue for future research.

Appendix A. Proofs

Proof of Proposition 1. For any given combination of S1, S2, and δ,
one can verify directly that q1c+q2

c≥r1
c+r2

c. Thus, aggregate sales in
the first period weakly exceed aggregate sales in the second period
and therefore the price in the first period is less than or equal to the
price in the second period. □

Proof of Proposition 2. The derivative of the equilibrium profit
function of firm iwith respect to Si is non-negative in all equilibrium
outcome regions and the profit function is continuous for all δ, Si,
Sj≥0. □

Proof of Proposition 3. Suppose that S=S1+S2 is fixed and assume
S2≥S1, which is without loss of generality. Note that this implies that
|S1−S2| increases when S1 decreases and that (S1, S2, δ)∈Xll

c∪Xlm
c ∪

Xlh
c ∪Xmm

c ∪Xmh
c ∪Xhh

c . In the following, let Qab denote aggregate
sales in equilibrium region Xab.

For first-period aggregate sales, we find that

Q c
ll ¼ S;

∂Q c
ll

∂S1
¼ 0;

Q c
lm ¼ 1−δþ S1 þ 2δS

2þ 2δ
;

∂Q c
lm

∂S1
¼ 1

2þ 2δ
N0;

Q c
lh ¼ 1

2
þ 1
2
S1;

∂Q c
lh

∂S1
¼ 1

2
N0;

Q c
mm ¼ 2−2δþ 3δS

3þ 3δ
;

∂Q c
mm

∂S1
¼ 0;

Q c
mh ¼ 4þ 2δþ 3δS1

6þ 6δ
;

∂Q c
mh

∂S1
¼ 3δ

6þ 6δ
N0;

Q c
hh ¼ 2

3
;

∂Q c
hh

∂S1
¼ 0:

Hence, an increase in |S1−S2| leads to a weak decrease in first-
period aggregate equilibrium sales and consequently to a weakly
higher first-period equilibrium price.

For second-period aggregate sales, we find that

Q c
ll ¼ 0;

∂Q c
ll

∂S1
¼ 0;

Q c
lm ¼ 2S−S1−1þ δ

2þ 2δ
;

∂Q c
lm

∂S1
¼ − 1

2þ 2δ
b0;

Q c
lh ¼ 1

2
;

∂Q c
lh

∂S1
¼ 0;

Q c
mm ¼ 3S−2þ 2δ

3þ 3δ
;

∂Q c
mm

∂S1
¼ 0;

Q c
mh ¼ 3S1 þ 2þ 4δ

6þ 6δ
;

∂Q c
mh

∂S1
¼ 3

6þ 6δ
N0;

Q c
hh ¼ 2

3
;

∂Q c
hh

∂S1
¼ 0:
The effect of an increase in |S1−S2| on second-period aggregate
equilibrium sales and second-period equilibrium price thus depends
on the equilibrium outcome region. □

Proof of Lemma 4. First-period profit is given by qi(1−qi−qj), which

is strictly decreasing in qi forqiN
1
2
−1

2
qj and in particular forqiN

1
2
. A re-

duction in first-period sales implies an increase of potential supply in
period 2. As Table 2 shows, firm i's second-period profit never decreases
when its second-period stock increases. Consequently, firm i would

strictly increase its profits by choosing qi ¼ 1
2
rather than qiN

1
2
. □

Proof of Theorem 5. Comparing the constraints in Table 3 shows
that all regions are disjoint. Thus, each combination of Si, Sj and δ be-
longs to at most one equilibrium region. The Nash equilibrium of the
reduced game is therefore unique for (Si, Sj, δ) in regions Xll

nc up to and
including Xhh

nc. The reduced game has no Nash equilibrium for (Si, Sj, δ)
belonging to region XØ

nc. Nash equilibria for the reduced game corre-
spond one-to-one with the subgame perfect Nash equilibria of the en-
tire game. □

Proof of Theorem 6. It can be verified that for each δ, the set of stock
profiles (S1, S2) such that (S1, S2, δ) belongs to region XØ

nc has a non-
empty interior. □

Proof of Proposition 7. By Proposition 1, price never decreases over
time under commitment. A price decline under non-commitment is
therefore only possible in regions where the non-commitment case
is different from the commitment case, i.e., regions Xmh

nc , Xhm
nc , Xm′h

nc ,
and Xhm′

nc . In these regions, one firm has a medium-sized stock and
one firm has a large stock. Let i be the smaller firm and let j be the
larger firm. In regions Xmh

nc and Xhm
nc it holds that

1
3

1−δð ÞbSi≤
2
3
−1

9
δ;

SjN

7þ 6
1
2
δþ 3

2
δ2−6Si−5δSi−δ2Si þ 5þ 5δ−2δSið Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δð Þ 1þ 1

2
δ

� �s

6þ 7δþ 2δ2 þ 6þ 4δð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δð Þ 1þ 1

2
δ

� �s :

The total quantity sold in the first period is

qnci þ qncj ¼ 1−δþ 2δSi
3þ 2δ

þ 2þ 3δ−2δSi
6þ 4δ

¼ 4þ δþ 2δSi
6þ 4δ

:

The total quantity sold in the second period is

rnci þ rncj ¼ 3Si−1þ δ
3þ 2δ

þ 4þ δ−3Si
6þ 4δ

¼ 3Si þ 2þ 3δ
6þ 4δ

:

Price strictly decreases from period 1 to period 2 when 4+

δ+2δSib3Si+2+3δ, which is equivalent to SiN
2−2δ
3−2δ

.
In regions Xm′h

nc and Xhm′
nc we have

2
3
−1

9
δb Si≤

2
3

Sj N
10þ 6δ−7Si−3δSi

8þ 6δ
:

The total quantity sold in the first period is

qnci þ qncj ¼ Si−
1
3
þ 2
3
−1

2
Si ¼

1
2
Si þ

1
3
:

The total quantity sold in the second period is

rnci þ rncj ¼ 1
3
þ 1
3
¼ 2

3
:
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Since
1
2
Si þ

1
3
b
2
3
as long as Sib

2
3
, price strictly decreases from peri-

od 1 to period 2 in these regions whenever Si≠
2
3
. □

Proof of Proposition 8. The derivative of the equilibrium profit func-
tion with respect to Si is non-negative in every equilibrium region.
The non-existence of an equilibrium for some combinations of (Si,
Sj, δ) makes it possible that a strict increase in Si leads to a strict de-
crease in the equilibrium profit of firm i. For instance, let δ=0.2,
Sj=0.69824, and

Si ¼
7
6
−Sj−

1
6
δþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δð Þ 1þ 1

2
δ

� �s

1þ δ
5
6
þ 1
6
δ−Sj

� �
≈0:59634:

These parameters correspond to a point on the upper boundary of
region Xmm

nc . The equilibrium profit of firm i equals 0.12937. Now sup-
pose that Si increases to

S′i ¼
7þ 6

1
2
δþ 3

2
δ2−6Sj−78δSj−2δ2Sj þ 5þ5δ−6Sj−4δSj

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þδð Þ 1þ1

2
δ

� �s

6þ 5δþ δ2 þ 2δ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δð Þ 1þ 1

2
δ

� �s

≈0:61011:

Our parameters now belong to region Xmh
nc . Firm i's equilibrium

profit equals 0.12751. □

Proof of Proposition 9. Suppose S=S1+S2 is fixed and S2≥S1,
which is without loss of generality. Thus, |S1−S2| increases when
S1 decreases. Moreover, since S2≥S1, it holds that (S1, S2, δ)∈Xll

nc∪
Xlm
nc∪Xlh

nc∪Xmm
nc ∪Xmh

nc ∪Xm′h
nc ∪Xhh

nc. As before, let Qab denote aggre-
gate sales in equilibrium region Xab. We then obtain the following

Qnc
ll ¼ S;

∂Qnc
ll

∂S1
¼ 0;

Qnc
lm ¼ 1−δþ S1 þ 2δS

2þ 2δ
;

∂Qnc
lm

∂S1
¼ 1

2þ 2δ
N0;

Qnc
lh ¼ 1

2
þ 1
2
S1;

∂Qnc
lh

∂S1
¼ 1

2
N0;

Qnc
mm ¼ 2−2δþ 3δS

3þ 3δ
;

∂Qnc
mm

∂S1
¼ 0;

Qnc
mh ¼ 4þ δþ 2δS1

6þ 4δ
;

∂Qnc
mh

∂S1
¼ 2δ

6þ 4δ
N0;

Qnc
m’h ¼ 1

2
S1 þ

1
3
;

∂Qnc
m’h

∂S1
¼ 1

2
N0:

Qnc
hh ¼ 2

3
;

∂Qnc
hh

∂S1
¼ 0:

In between regions Xmm
nc and Xmh

nc there is no equilibrium. Consider
an increase in S1 together with a decrease by the same magnitude in
S2 that leads to a move from region Xmh

nc to region Xmm
nc . In this case, it

holds that Qmm
nc coincides with Qmm

c and

Qnc
mh ¼ 4þ δþ 2δS1

6þ 4δ
b
4þ 2δþ 3δS1

6þ 6δ
¼ Q c

mh:

The desired result now follows from Proposition 3.
Between regions Xm′h

nc and Xmm
nc there is no equilibrium. Consider an

increase in S1 together with a decrease by the same magnitude in S2
that leads to a move from region Xm′h

nc to region Xmm
nc . Again, it holds

that Qmm
nc coincides with Qmm

c , region Xm′h
nc is a subset of region Xmh

c , and

Qnc
m′h ¼ 1

2
S1 þ

1
3
≤4þ 2δþ 3δS1

6þ 6δ
¼ Q c

mh;

where S1≤2/3 is used to derive the inequality sign. The desired result
again follows from Proposition 3.
As to second-period aggregate sales, we obtain the following

Qnc
ll ¼ 0;

∂Qnc
ll

∂S1
¼ 0;

Qnc
lm ¼ 2S−S1−1þ δ

2þ 2δ
;

∂Qnc
lm

∂S1
¼ − 1

2þ 2δ
b0;

Qnc
lh ¼ 1

2
;

∂Qnc
lh

∂S1
¼ 0;

Qnc
mm ¼ 3S−2þ 2δ

3þ 3δ
;

∂Qnc
mm

∂S1
¼ 0;

Qnc
mh ¼ 3S1 þ 2þ 3δ

6þ 4δ
;

∂Qnc
mh

∂S1
¼ 3

6þ 4δ
N0;

Qnc
m’h ¼ 2

3
;

∂Qnc
m′h

∂S1
¼ 0;

Qnc
hh ¼ 2

3
;

∂Qnc
hh

∂S1
¼ 0: □

Proof of Proposition 10. From the constraints that define the various
regions it follows that Xll

ncpXll
c, Xlm

ncpXlm
c , Xml

ncpXml
c , Xlh

ncpXlh
c , Xhl

ncpXhl
c ,

Xmm
nc pXmm

c and Xhh
ncpXhh

c . The equilibrium sales in regions Xll
nc, Xlm

nc, Xml
nc,

Xlh
nc, Xhl

nc, Xmm
nc , andXhh

nc coincidewith the equilibrium sales in, respectively,
region Xll

c, Xlm
c , Xml

c , Xlh
c , Xhl

c , Xmm
c and Xhh

c . □

Proof of Proposition 12. We assume without loss of generality that
S2≥S1. Whenever there is a change in the equilibrium price, (S1, S2,
δ) belongs to region Xmh

c . In region Xmh
c , prices in the first and second

periods are respectively

pc1 ¼ 2þ 4δ−3δS1
6þ 6δ

and pc2 ¼ 4þ 2δ−3S1
6þ 6δ

:

Furthermore, (S1, S2, δ) belongs to region Xmh
nc or Xm′h

nc . In region
Xmh
nc , prices are

pnc1 ¼ 2þ 3δ−2δS1
6þ 4δ

and pnc2 ¼ 4þ δ−3S1
6þ 4δ

and in region Xm′h
nc , prices are

pnc1 ¼ 2
3
−1

2
S1 and pnc2 ¼ 1

3
:

In region Xmh
c , we have 1−δð Þ=3bS1≤2

3
from which it follows that

p1
c≤p1

nc and p2
c≥p2

nc. □

Proof of Proposition 13. Assume without loss of generality that
S2≥S1. Whenever there is a change in the equilibrium outcome, it
holds that (S1, S2, δ) belongs to region Xmh

c . Firm 2 has profits equal to

Πc
2 ¼ 2þ 4δ−3δS1

6þ 6δ

� �2
þ δ

4þ 2δ−3S1
6þ 6δ

� �2
:

Moreover, (S1, S2, δ) belongs to region Xmh
nc or region Xm′h

nc . In re-
gion Xmh

nc , firm 2 has profits equal to

Πnc
2 ¼ 2þ 3δ−2δS1

6þ 4δ

� �2
þ δ

4þ δ−3S1
6þ 4δ

� �2
:

In region Xm′h
nc , profits of firm 2 are given by

Πnc
2 ¼ 4

9
þ 1
9
δ−2

3
S1 þ

1
4

S1ð Þ2:

We have that S1≤
2
3
in all these regions, from which it follows that

Π2
nc≥Π2

c.
Analogous calculations yield the opposite relation for the profits of

firm 1. □
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Proof of Proposition 14. It follows directly from the equilibrium
outcomes that per-period sales weakly increase in S1 and S2. □

Proof of Proposition 15. It follows directly from the equilibrium out-
comes that per-period salesweakly increase in S1 and S2 in all equilibrium
outcome regions. To illustrate that an increase in stocksmay adversely af-
fect consumer surplus, consider δ, Si, S′i and Sj as defined in the proof of
Proposition 8. Equilibrium consumer surplus for δ, Si, Sj is given by

CSncmm≈0:25818:

An increase from Si to S′i results in an equilibrium consumer surplus of

CSncmh≈0:25600: □

Proof of Proposition 16. We will show that for given aggregate
stock S=S1+S2, an increase in |S1−S2| leads to a weakly lower equi-
librium consumer surplus under commitment and non-commitment.

Commitment:
Except for regions Xlm

c and Xml
c , Proposition 3 implies a weak de-

crease in sales in both periods when |S1−S2| increases and therefore
a weak decrease in consumer surplus.

Consider some (S1, S2, δ) in region Xlm
c or Xml

c . Assume without loss
of generality that S2≥S1, so |S1−S2| increases if S1 decreases. Then
(S1, S2, δ) belongs to region Xlm

c . Consumer surplus is given by

1
2

1−δþ S1 þ 2δS
2þ 2δ

� �2
−1

2
δ

2S−S1−1þ δ
2þ 2δ

� �2
:

The derivative of the above expression with respect to S1 is

1−δþ S1 þ 2δS
2þ 2δð Þ2 þ δ

2S−S1−1þ δ
2þ 2δð Þ2 ;

which is easily shown to be non-negative.
Non-commitment:
First note that, following Proposition 10, this proposition holds for

|S1−S2| as long as (S1, S2, δ)∉Xmh
nc ∪Xhm

nc ∪Xm′h
nc ∪Xhm′

nc . Next, suppose
without loss of generality that S2≥S1. Thus, |S1−S2| increases if S1 de-
creases. Proposition 9 implies a weak decrease in sales in both periods
when |S1−S2| increases and therefore a weak decrease in consumer
surplus for regions Xm′h

nc and Xmh
nc . The remaining cases to check are

those where a decrease in S1 changes the equilibrium outcome from
a point in Xmm

nc to a point in Xmh
nc or from Xmm

nc to Xm′h
nc .

Let c=S1+S2, where c is a constant. Consumer surplus in region
Xmh
nc and region Xm ´h

nc is

CSncmh ¼ 1
2

4þ δþ 2δS1
6þ 4δ

� �2
þ 1
2
δ

3S1 þ 2þ 3δ
6þ 4δ

� �2
;

CSncm′h ¼ 1
2

1
2
S1 þ

1
3

� �2
þ 2
9
δ;

and in region Xmm
nc

CSncmm ¼ 1
2

2−2δþ 3δc
3þ 3δ

� �2
þ 1
2
δ

3c−2þ 2δ
3þ 3δ

� �2
:

As mentioned, consumer surplus in regions Xmh
nc and Xm′h

nc increases
with S1, for fixed c. In region Xmm

nc , consumer surplus doesn't change if
S1 changes, for fixed c. This implies that, if CSmh

nc ≤CSmm
nc for any

S1; S2; δð Þ∈ S1; S2; δð Þf jS2 ¼ β5;
1
3

1−δð Þ≤S1≤
2
3
−1

9
δg, consumer sur-

plus decreases when an increase in S1 changes the equilibriumoutcome
from region Xmh

nc to Xmm
nc . Indeed, calculations show that CSmh

nc ≤CSmm
nc for

these values of (S1, S2, δ). Also, it implies thatwhen CSm′h
nc ≤CSmm

nc for any

S1; S2; δð Þ∈
n

S1; S2; δð ÞjS2 ¼ β7;
2
3
−1

9
δbS1≤

2
3

o
, consumer surplus de-

creases when an increase in S1 changes the equilibrium outcome from
region Xm′h

nc to Xmm
nc . □
Proof of Proposition 17. Assume without loss of generality that
S2≥S1. Whenever there is a change in consumer surplus between set-
tings, (S1, S2, δ) belongs to region Xmh

c , and to Region Xmh
nc or Xm′h

nc .
Consumer surplus in regions Xmh

c , Xmh
nc and Xm´h

nc is respectively

CScmh ¼ 4þ 2δþ 3δS1
6þ 6δ

� �2
þ δ

3S1 þ 2þ 4δ
6þ 6δ

� �2
;

CSncmh ¼ 4þ δþ 2δS1
6þ 4δ

� �2
þ δ

3S1 þ 2þ 3δ
6þ 4δ

� �2
;

CSncm′h ¼ 1
2
S1 þ

1
3

� �2
þ 4
9
δ:

For region Xmh
nc and Xm′h

nc , it holds respectively that
1
3

1−δð Þ≤Si≤
2
3 − 1

9 δ and
2
3
−1

9
δbSi≤

2
3
. Now,

CScmh≥CSncmh for Si∈
1
3

1−δð Þ;24−7δ−17δ2

3δ

" #

and

CScmh≥CSncm′h for Si∈ −2þ 8
3
δ;
2
3

 �
:

It holds that

24−7δ−17δ2

3δ
≥2
3
−1

9
δ

if and only if δ≤ 24
25

and

−2þ 8
3
δ≤ 2

3
−1

9
δ

if and only if δ≤ 24
25

. Thus, for δ≤24
25

, consumers prefer commitment

to non-commitment. □

Proof of Proposition 18. Assume without loss of generality that
S2≥S1. Whenever there is a change in total surplus between the com-
mitment and the non-commitment setting, (S1, S2, δ) belongs to re-
gion Xmh

c , and to region Xmh
nc or Xm′h

nc . Total surplus in regions Xmh
c ,

Xmh
nc and Xm′h

nc is respectively given by

TScmh¼
4þ2δþ3δS1

6þ 6δ

� �
1−1

2
4þ2δþ3δS1

6þ 6δ

� �� �
þδ

3S1þ2þ4δ
6þ 6δ

� �
1−1

2
3S1þ2þ4δ

6þ 6δ

� �� �
;

TSncmh ¼ 4þδþ2δS1
6þ 4δ

� �
1−1

2
4þδþ2δS1

6þ 4δ

� �� �
þ δ

3S1þ2þ3δ
6þ 4δ

� �
1−1

2
3S1þ2þ3δ

6þ 4δ

� �� �
;

TSncm′h ¼ 1
2
S1 þ

1
3

� �
1−1

2
1
2
S1 þ

1
3

� �� �
þ δ

2
3

� �
1−1

3

� �
:

For region Xhm
nc and region Xhm′

nc , it holds respectively that
1
3

1−δð Þ≤
Si≤ 2

3 − 1
9 δ and

2
3
−1

9
δbSi≤

2
3
. Now,

TSncmh≥TScmh if and only if S1∈
−12þ 5δþ 7δ2

3δ
;
1
3

1−δð Þ
" #

and

TSncm′h≥TScmh if and only if S1∈
2
3
;2−4

3
δ

 �
:

Hence, for S1∈
1
3

1−δð Þ;2
3

 �
, total surplus is highest in the commit-

ment setting. □
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Appendix B. Reduced best response correspondence
We derive the reduced best response correspondence of firm i for the non-commitment case. To keep the appendix within reasonable length,
we have omitted the derivation of second-order conditions. In accordance with Lemma 4, we can restrict our analysis to best responses against

qj≤
1
2
. We distinguish three cases:

Að Þ qjbSj−
1
2
;

Bð Þ Sj−
1
2
≤qjbSj−

1
3
;

Cð Þ Sj−
1
3
≤qj≤Sj:

These three cases correspond to the three cases of residual stock Tj=Sj−qj of firm j with qualitatively different second-period behavior of
firm j.

Að Þ qjbSj−
1
2

Using the reduced profit function (2), for0≤qibSi−
1
3
, profit is given by (Yhh), and for Si−

1
3
≤qi≤Si, profit is given by (Ylh). Taking the unrest-

ricted first-order condition of the profit function in (Yhh) and (Ylh) and solving for qi results in qi
hh and qi

lh given by

qhhi ¼ 1
2
−1

2
qj;

qlhi ¼
1−qj−

1
2
δþ δSi

2þ δ
:

It holds that qhhi ∈ 0; Si−
1
3

 �
if and only if

5
6
−1

2
qjbSi. Similarly, it holds that qlhi ∈ Si−

1
3
; Si

 �
if and only if

1
2
−1

2
qj−

1
4
δ≤Si≤

5
6
− 1

12
δ−1

2
qj.

We therefore find that the reduced best response qi
� of player 1 to qj is given by

q�i ¼

Si; if 0≤Sib
1
2
−1

2
qj−

1
4
δ;

1−qj−
1
2
δþ δSi

2þ δ
; if

1
2
−1

2
qj−

1
4
δ≤Si≤

5
6
− 1

12
δ−1

2
qj;

Si−
1
3
; if

5
6
− 1

12
δ−1

2
qjbSi≤

5
6
−1

2
qj;

1
2
−1

2
qj; if

5
6
−1

2
qjbSi:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

Bð Þ Sj−
1
2
≤qjbSj−

1
3

It follows from the reduced profit function (2) that, for 0≤qibSi−
1
3
, profit is given by (Yhh), for Si−

1
3
≤qib2Tj−1þ Si, profit is given by (Ylh),

and for 2Tj−1+Si≤qi≤Si, profit is given by (Yll). Taking the unrestricted first-order condition of the reduced profit function in (Yhh), (Ylh) and
(Yll) and solving for qi results in qi

hh, qilh, and qi
ll given by

qhhi ¼ 1
2
−1

2
qj;

qlhi ¼
1−qj−

1
2
δþ δSi

2þ δ
;

qlli ¼ 1−qj þ 2δSi−δþ δTj
2þ 2δ

:

It holds thatqhhi ∈ 0; Si−
1
3

 �
if and only if

5
6
−1

2
qjbSi. Similarly, it holds that qlhi ∈ max 0; Si−

1
3

� 	
;2Tj−1þSi

 �
if and only if Slhi bSi≤S

lh
i , where

S lhi ¼ 3
2
þ 1
4
δ−1

2
qj− 2þ δð ÞTj;

Slhi ¼ 5
6
− 1

12
δ−1

2
qj:
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The requirement qi
lh≥0 is not binding, since qj≤ 1

2 implies qi
lh is positive. It holds that qi

ll∈ [max{0, 2Tj−1+Si}, Si] if and only if

max Sllai ; Sllbi
n o

≤Si≤S
ll
i , where

S llai ¼ 1
2δ

qj−1þ δ−δTj
� �

;

S llbi ¼ 1
2

1−δ−qj þ δTj
� �

;

Slli ¼ 3
2
þ 1
2
δ−1

2
qj− 2þ 3

2
δ

� �
Tj:

Since Sj−qj≥1/3, it holds that max S
lh
i ; S

ll
i

n o
≤5=6−qj=2. The intervals Slhi ; S

lh
i

h i
and max Sllai ; Sllbi

n o
; S

ll
i

h i
are overlapping. In particular, since

qj≤1/2, Tj=Sj−qj≤1/2, and δ≤1, it holds that max S llai ; S llbi
n o

≤Slhi ≤S
ll
i :

The reduced profit function of firm i has two local maxima if Slhi ≤Si≤min S
ll
i ; S

lh
i

n o
. Since S

lh
i ≤S

ll
i if and only if qj≥Sj−

8þ 7δ
24þ 18δ

, the profit func-

tion has two local maxima if

Sj−
1
2
≤qj≤Sj−

8þ 7δ
24þ 18δ

and S lhi ≤Si≤Slli

or

Sj−
8þ 7δ

24þ 18δ
≤qj≤Sj−

1
3

and S lhi ≤Si≤Slhi :

To find the global maximum, we compare the profits in both local maxima. The profits corresponding to qi
lh and qi

ll are respectively

Πlh
i ¼ 4þ 4q2j −4δþ 16δSi þ 8δS2i þ δ2 þ−8qj þ 4δqj−8Siδqj

16þ 8δ
;

Πll
i ¼ 1−2δþ δ2−2qj þ 2δ2qj þ q2j þ 2δq2j þ δ2q2j þ 8δSi−4δS2i þ 2δSj−2δ2Sj−2δqjSj−2δ2qjSj−4δSiSj þ δ2S2j

4þ 4δ
:

It holds that Πi
lh≥Πi

ll if and only if Si≥ S̃i, where

S̃i ¼ 1−1
2
qj− 1þ 1

2
δ

� �
Tj þ

1
2
−Tj

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δð Þ 1þ 1

2
δ

� �s
:

Since S̃iNS
lh
i whenever qj≥Sj−

1
2
, qilh maximizes profits for S̃i≤Si≤S

lh
i .

Since max Sllai ;S llbi
n o

≤ S̃i≤S
ll
i , qi

ll maximizes profits for max Sllai ;S llbi
n o

≤Si≤ S̃i.

When max S
ll
i qj

 �

; S
lh
i qj

 �n o

bSi≤
5
6
−1

2
qj we have a boundary solution, and profit maximizing sales are given by q�i ¼ Si−

1
3
.

One possibility remains:max S
lh
i ; S̃i

n o
bSi≤S

ll
i . In this case, the profit maximizing choice is either qill or qi�. We argue that qill maximizes profits,

so for S
lh
i ≤Si≤S

ll
i , the best response of firm i is qill.

It holds that

Πll
i ≥Π�

i ¼ Si−
1
3

� �
4
3
−Si−qj

� �
þ 1
9
δ

if and only if

Si∈
5
6
−1

6
δ−1

2
qj þ

1
2
δTj �

1
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ 1þ δð Þ 3Tj−1

� �r �
:

Since

S lhi ; S
ll
i

h i
⊂ 5

6
−1

6
δ−1

2
qj þ

1
2
δTj �

1
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ 1þ δð Þ 3Tj−1

� �r �

for

qjb Sj−
4þ 5δ−4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δð Þ 1þ 1

2
δ

� �s

6δ
;

we have our desired conclusion.
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Summarizing, the reduced best response qi
� of player i against qj for Sj−

1
2
≤qjbSj−

1
3
is given by

q�i ¼

0; if 0≤SibS
lla
i ;

Si; if 0≤SibS
llb
i ;

1−qj þ 2δSi−δþ δTj
� �

2þ 2δ
; if max Sllai ;S llbi

n o
≤Si≤ S̃i;

1−qj−
1
2
δþ δSi

2þ δ
; if S̃i≤Si≤S lhi ;

1−qj þ 2δSi−δþ δTj
� �

2þ 2δ
;

if max S̃i; S
lh
i

n o
b Si ≤ S lli ;

Si−
1
3

if max S lhi ; S
ll
i

n o
b Si≤

5
6
−1

2
qj;

1
2
−1

2
qj; if

5
6
−1

2
qj b Si;

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

where

S̃i ¼ 1−1
2
qj− 1þ 1

2
δ

� �
Tj þ

1
2
−Tj

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δð Þ 1þ 1

2
δ

� �s
;

Slhi ¼ 3
2
þ 1
4
δ−1

2
qj− 2þ δð ÞTj;

Slhi ¼ 5
6
− 1

12
δ−1

2
qj;

S llai ¼ 1
2δ

qj−1þ δ−δTj
� �

;

S llbi ¼ 1
2

1−δ−qj þ δTj
� �

;

S lli ¼ 3
2
þ 1
2
δ−1

2
qj− 2þ 3

2
δ

� �
Tj:

Cð Þ Sj−
1
3
≤qj≤Sj

It follows from the reduced profit function (2) that, for 0≤qibSi−
1
2

þ 1
2
Tj, profit is given by (Yhl), and for Si−

1
2

þ 1
2
Tj≤qi≤Si, profit is given by

(Yll). Taking the unrestricted first-order condition of the profit function in (Yhl) and (Yll) and solving for qi results in qi
hl and qi

ll given by

qhli ¼ 1
2
−1

2
qj;

qlli ¼ 1−qj þ 2δSi−δþ δTj
2þ 2δ

:

It holds that qhli ∈ 0; Si−
1
2

þ 1
2
Tj

 �
if and only if 1−1

2
Sjb Si. Similarly, it holds that qlli ∈ Si−

1
2

þ 1
2
Tj; Si

 �
if and only if

max
1
2

1−δ−qj þ δTj

 �

;
1
2δ

−1þ δþ qj−δTj

 �� 	

≤ Si≤1−1
2
Sj . We therefore find that the reduced best response qi

� of player 1 to qj is given by

q�i ¼

Si; if 0≤Sib
1
2

1−δ−qj þ δTj
� �

;

0; if 0≤ Si b
1
2δ

−1þ δþ qj−δTj
� �

;

1−qj þ 2δSi−δþ δTj
2þ 2δ

; if max
1
2

1−δ−qj þ δTj
� �

;
1
2δ

−1þ δþ qj−δTj
� �� 	

≤ Si≤1−1
2
Sj;

1
2
−1

2
qj; if 1−1

2
Sj b Si:

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

Table 4 now follows immediately.



Table 4
Reduced best response correspondence σ i

R �(qj) for 0≤qj≤ 1
2.

Aj qjbSj−
1
2

� �
qi
� ri

�

1) 0≤qjbα1 Si 0

2) α1≤qj≤α2

1−qj−
1
2
δþ δSi

2þ δ

2Si−1þ qj þ
1
2
δ

2þ δ

3) α2bqj≤α3 Si−
1
3

1
3

4) qjNα3
1
2

−1
2
qj

1
3

Bj Sj−
1
2

≤qjbSj−
1
3

� �
qi
� ri

�

1) 0≤qjbα4 Si 0
2) qjNα5 0 Si

3) max{α4, α6}≤qj≤α5
1−qj þ 2δSi−δþ δTj

2þ 2δ
2Si−1þ qj þ δ−δTj

2þ 2δ

4) qj≤α6, qj≤α2

1−qj−
1
2
δþ δSi

2þ δ

2Si−1þ qj þ
1
2
δ

2þ δ

5) α2bqjbα6, qj≥α7
1−qj þ 2δSi−δþ δTj

2þ 2δ
2Si−1þ qj þ δ−δTj

2þ 2δ

6) α2bqj≤α3, qjbα7 Si−
1
3

1
3

7) qjNα3
1
2

−1
2
qj

1
3

Cj qj≥Sj−
1
3

� �
qi
� ri

�

1) 0≤qjbα4 Si 0
2) qjNα5 0 Si

3) α4≤qj≤α5, Si≤α8
1−qj þ 2δSi−δþ δTj

2þ 2δ
2Si−1þ qj þ δ−δTj

2þ 2δ

4) SiNα8
1
2

−1
2
qj

1
2

−1
2

Sj þ
1
2
qj

Explanation of the symbols

α1 1−1
2
δ−2Si

α2
5
3

−1
6
δ−2Si

α3
5
3
−2Si

α4
1−δþ δSj−2Si

1þ δ

α5
1−δþ δSj þ 2δSi

1þ δ

α6

2Si−2þ 2Sj þ δSj− 1−2Sj

 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ δð Þ 1þ 1
2
δ

� �s

1þ δþ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δð Þ 1þ 1

2
δ

� �s

α7
2Si−3−δþ 4Sj þ 3δSj

3þ 3δ

α8 1−1
2
Sj
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Appendix C. Subgame perfect equilibria

We define the sets Aj(1),…, Aj(4), Bj(1),…, Bj(7), Cj(1),…, Cj(4) as
the sets of quantities qj satisfying the constraints presented in Table 4.
Notice that each of these sets is a subset of [0, 1/2]. Moreover, we de-
fine Aj k1;…; k‘ð Þ ¼ Aj k1ð Þ∪⋯∪Aj k‘ð Þ and similarly for sets Bj k1;…; k‘ð Þ
andCj k1;…; k‘ð Þ. In the proofs, we make use of Table 4. That table pre-
sents the reduced best response of firm i to a first-period sales quan-
tity of firm jwith the use of coefficients α1,…, α8. In the following, we
will need the reduced best response of firm j to a first-period sales
quantity of firm i, which follows from Table 4 by reversing the roles
of firm i and j. The corresponding coefficients are denoted by β1, …,
β8.

Proposition C.1. If (qi�, qj�) is a Nash equilibrium of the reduced game

and qj
�∈ Aj(1, 2, 3)∪Bj(1, 2, 3, 4, 5, 6)∪Cj(1), then Si−q�i ≤

1
3
; so

qi
�∈Ci(1, 2, 3, 4).
Proof. For qj�∈ Aj(1, 3)∪Bj(1, 6)∪Cj(1) it follows immediately from

Table 4 that Si−q�i ≤
1
3
. For qj�∈Aj(2)∪Bj(4),

Si−q�i ¼
2Si−1þ q�j þ

1
2
δ

2þ δ
≤
2
3

þ 1
3
δ

2þ δ
¼ 1

3
;

where the inequality follows from qj
�≤α2. For qj�∈Bj(2),

Si−q�i b
3
4
− 1

4δ
−1

2
Sjb

1
3
;

where the first inequality follows from α5bq�j ≤
1
2
and the second one

from δ≤1 and SjNq�j þ
1
3
≥1
3
. For qj�∈Bj(3),

Si−q�i ¼
2Si−1þ q�j þ δ−δTj

2 1þ δð Þ ≤
1þ δþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δð Þ 1þ1

2
δ

� �s !
1−2Tj
� �

2 1þ δð Þ

≤
1þ δþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δð Þ 1þ 1

2
δ

� �s

6 1þ δð Þ ≤1
3
;

where the first inequality follows from qj
�≥α6 (i.e. Si≤Si

c), the second

from
1
3

b Tj≤
1
2
and the third one from δ∈(0, 1]. For qj�∈Bj(5),

Si−q�i ¼
2Si−1þ q�j þ δ−δTj

2 1þ δð Þ ≤1−2Tj≤
1
3
;

where the first inequality follows from qj
�≤α7, i.e. Si≤Slli and the second

one from
1
3
bTj≤

1
2
. □

Proposition C.2. If (qi�, qj�) is a Nash equilibrium of the reduced game

and qj
�∈ Aj(4)∪Bj(7)∪Cj(4), then Si−q�i N

1
3
; so qi

�∈ Ai(1, 2, 3, 4)∪Bi(1,

2, 3, 4, 5, 6, 7).

Proof. If qj�∈ Aj(4)∪Bj(7), then since qj
�Nα3, we have SiN

5
6
−1

2
q�j ,

and q�i ¼
1
2
−1

2
q�j . Therefore, Si−q�i N

1
3
. If qj�∈ Cj(4), then Sj−q�j ≤

1
3
,

SiN1−
1
2
Sj, and q�i ¼

1
2
−1

2
q�j . This implies Si−q�i N

1
3
. □

We continue by solving for all Nash equilibria (qi�, qj�) of the re-
duced game where qj

�∈Aj(1). Next, we consider Nash equilibria (qi�,
qj
�) with qj

�∈Aj(2). We restrict attention to the case with qi
�∉Ai(1),

since using the symmetry of the firms such equilibria follow already
from the first case. We continue with qj

�∈Aj(3), and so on.

q�
j∈Aj 1ð Þ

It holds that

q�j b Sj−
1
2
; ð3Þ

q�j b 1−1
2
δ−2Si; ð4Þ

q�i ¼ σR
i q�j
� �

¼ Si: ð5Þ

By Proposition C.1, qi�∈Ci(1, 2, 3, 4). This gives the following
possibilities:

q�i ∈Ci 1ð Þ : q�j ¼ Sj;

q�i ∈Ci 2ð Þ : q�j ¼ 0;
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q�i ∈Ci 3ð Þ : q�j ¼
1−Si þ 2δSj−δ

2þ 2δ
; ð6Þ

q�i ∈Ci 4ð Þ : q�j ¼
1
2
−1

2
Si: ð7Þ

If qi�∈Ci(2), then qi
�Nβ5 implies Sjb

1
2
− 1

2δ
þ 1
2δ

Sib
1
2
by (5) and

Lemma 4, so (3) leads to a contradiction.

Next, (3) and (6) imply SjN1−
1
2
Si, whereas qi

�∈Ci(3) implies

qi
�≤β8, so Sj≤1−1

2
Si, a contradiction.

When qi
�∈Ci(4), then q�i ≥Si−

1
3
and SjNβ8. These inequalities to-

gether with the inequalities (3) and (4) lead to the conclusion that
(qj�, qi

�) is a Nash equilibrium with qj
�∈Aj(1) if and only if

q�j ¼
1
2
−1

2
Si;qi

�=Si, Sj N 1−1
2
Si; and Sib

1
3
−1

3
δ.

q�
j∈Aj 2ð Þ

It holds that

q�j b Sj−
1
2
; ð8Þ

1−1
2
δ−2Si≤q�j ≤

5
3
−1

6
δ−2Si; ð9Þ

q�i ¼ σR
i q�j
� �

¼
1−q�j −

1
2
δþ δSi

2þ δ
≤1
2
:

By Proposition C.1, qi
�∈Ci(2, 3, 4).6 This gives the following

possibilities:

q�i ∈Ci 2ð Þ : q�i ¼
1− 1

2 δþ δSi
2þ δ

; q�j ¼ 0; ð10Þ

q�i ∈Ci 3ð Þ : q�i ¼
1þ 2δ−δ2 þ δSi þ 2δ2Si−2δSj

3þ 5δþ 2δ2
; ð11Þ

q�j ¼
2−3δ−δ2 þ 8δSj þ 4δ2Sj þ 2δSi

6þ 10δþ 4δ2
;

q�i ∈Ci 4ð Þ : q�i ¼
1−δþ 2δSi

3þ 2δ
; q�j ¼

2þ 3δ−2δSi
6þ 4δ

: ð12Þ

Consider qi�∈Ci(2). Then qi
�Nβ5, so Sjb

−2þ 3δþ δ2−2δSi
8δþ 4δ2

b
1
2
, and

(8) leads to a contradiction.
Consider qi�∈Ci(3). It holds that

5þ 2δþ δ2 þ 2δSi
6þ 2δ

b Sj≤1−1
2
Si; ð13Þ

where the first inequality follows from (8) and (11), and the second
inequality from Sj≤β8. By rewriting the expression in (13), it follows

that Sib
1
3
−1

3
δ.

However, this is contradicted by

Si≥
1þ 2δ−δ2−2δSj

3þ 4δ
≥1
3
−1

3
δ;

where the first inequality follows from (9) and (11), and the second
inequality from Sj≤β8.
6 Note that, by Proposition C.1, qi*∉Ci(1). By Proposition C.1, if qi*∈Ci(1), then qj
*∈C-

j(1, 2, 3, 4).
Consider qi�∈Ci(4). It is implied by (9) and (12) that

1
3

1−δð Þ≤Si≤
1
3

2−1
3
δ

� �
:

From (8) and (12) it follows that SjN
5þ 5δ−2δSi

6þ 4δ
. In conclusion,

(qj�, qi
�) is a Nash equilibrium with qj

�∈Aj(2) if and only if

q�j ¼
2þ 3δ−2δSi

6þ 4δ
, q�i ¼

1−δþ 2δSi
3þ 2δ

,
1
3

1−δð Þ≤Si≤
1
3

2−1
3
δ

� �
, and

SjN
5þ 5δ−2δSi

6þ 4δ
.

q�
j∈Aj 3ð Þ

It holds that

q�j b Sj−
1
2
; ð14Þ

5
3
−1

6
δ−2Si b q�j ≤

5
3
−2Si; ð15Þ

q�i ¼ σR
i q�j
� �

¼ Si−
1
3
:

By Proposition C.1, qi
�∈Ci(2, 3, 4). This gives the following

possibilities:

q�i ∈Ci 2ð Þ : q�j ¼ 0;

q�i ∈Ci 3ð Þ : q�j ¼
4
3
−2

3
δþ 2δSj−Si

2þ 2δ
;

q�i ∈Ci 4ð Þ : q�j ¼
2
3
−1

2
Si:

Consider qi
�∈Ci(2). Since qj

�=0, the second inequality in (15)

implies Si≤
5
6
. We have that

1
2
b Sj b

Si−
4
3

þ 2
3
δ

2δ
; ð16Þ

where the first inequality follows from (14) and the second from

qi
�Nβ5. By rewriting the expression (16), we find that SiN

4
3

þ 1
3
δ, con-

tradicting Si≤5/6.
Consider qi�∈Ci(3). By (14), it should hold that

SjN1
1
6
þ 1
6
δ−1

2
Si;

which contradicts with Sj≤β8.
Consider qi�∈Ci(4). It holds that

2
3
−1

9
δ b Si≤

2
3
;

where both inequalities follow from (15). From (14), it follows that

Sj N
7
6
−1

2
Si:

The other constraints are redundant. In conclusion, qj�∈Aj(3) if

and only if q�i ∈Ci 4ð Þ; SjN
7
6
−1

2
Si and

2
3
−1

9
δ b Si≤

2
3
.

q�
j∈Aj 4ð Þ
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It holds that

q�j bSj−
1
2
; ð17Þ

q�j N
5
3
−2Si:

We have

q�i ¼ σR
i q�j
� �

¼ 1
2
−1

2
qj≤

1
2
:

By Propositions C.1 and C.2, qi�∈Ai(4)∪Bi(7).7 This gives the fol-
lowing possibilities:

q�i ∈Ai 4ð Þ : q�i ¼ q�j ¼
1
3
;

q�i ∈Bi 7ð Þ : q�i ¼ q�j ¼
1
3
;

Consider qi�∈Ai(4)∪Bi(7). It follows from (17) that

SjN
5
6
:

For qi�∈Ai(4), it follows from q�i bSi−
1
2
that SiN

5
6
. Next, if qi�∈Bi(7),

it follows from

Si−
1
2
≤q�i bSj−

1
3

that

2
3
bSi≤

5
6
:

The other constraints are redundant. In conclusion, qj�∈Aj(4) if

and only if qi�∈Ai(4)∪Bi(7) and SjN
5
6
, SiN

2
3
.

q�
j∈Bj 1ð Þ

It holds that

Sj−
1
2
≤q�j bSj−

1
3
; ð18Þ

q�j b
1−δþ δSj−2Si

1þ δ
: ð19Þ

We have

q�i ¼ σR
i q�j
� �

¼ Si≤
1
2
:

By Proposition C.1, qi�∈Ci(2, 3, 4). This gives the following possi-
bilities:

q�i ∈Ci 2ð Þ : q�j ¼ 0;

q�i ∈Ci 3ð Þ : q�j ¼
1−Si þ 2δSj−δ

2þ 2δ
;

q�i ∈Ci 4ð Þ : q�j ¼
1
2
−1

2
Si:
7 Note that Proposition C.1 excludes that qi
�∈Ai(1, 2, 3)∪Bi(1, 2, 3, 4, 5, 6) and

qj
�∈Aj(4).
For qi�∈Ci(2), it can be found that

Sjb
1
2δ

Si−1þ δð Þb 1
3δ

−1þ δð Þ≤0;

where the first inequality follows from qi
�Nβ5, the second one from

(19) and the last one from δ≤1.

For qi
�∈Ci(3), (18) implies

5
6
−1

6
δ−1

2
SibSj≤1−1

2
Si. By (19),

Sib
1
3
−1

3
δ. The other constraints are redundant.

Next, qi
�∈Ci(4) implies Sj N 1−1

2
Si, whereas (18) implies

Sj≤1−1
2
Si, a contradiction.

In conclusion, qj
�∈Bj(1) if and only if qi

�∈Ci(3) and
5
6
−

1
6
δ−1

2
Si b Sj≤1−1

2
Si; Sib

1
3
−1

3
δ.

q�
j∈Bj 2ð Þ

It holds that

Sj−
1
2
≤q�j b Sj−

1
3
; ð20Þ

q�j N
1−δþ δSj þ 2δSi

1þ δ
: ð21Þ

We have

q�i ¼ σR
i q�j
� �

¼ 0:

By Proposition C.1, qi�∈Ci(2, 3, 4). This gives the following possi-
bilities:

q�i ∈Ci 2ð Þ : q�j ¼ 0;

q�i ∈Ci 3ð Þ : q�j ¼
1þ 2δSj−δþ δSi

2þ 2δ
;

q�i ∈Ci 4ð Þ : q�j ¼
1
2
:

For qi�∈Ci(2), from qi
�Nβ5 it follows that Sjb

1
2δ

−1þ δ−δSið Þ≤0.

Consider qi�∈Ci(3). Inequality (20) implies Sib
1
3δ

−1þ δð Þ≤0.

If qi�∈Ci(4), it holds again that

Sib
1
4δ

−1þ 3δ−2δSj
� �

b
1
3δ

−1þ δð Þ≤0;

where the first inequality follows from (21) and the second one from
SjNβ8.

In conclusion, qj�∉Bj(2).

q�
j∈Bj 3ð Þ

It holds that

Sj−
1
2
≤q�j bSj−

1
3
; ð22Þ

qj≥max
1−δþδSj−2Si

1þ δ
;

2Si−2þ2SjþδSj− 1−2Sj
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þδð Þ 1þ1
2
δ

� �s

1þ δþ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δð Þ 1þ 1

2 δ

 �q

8>>>><
>>>>:

9>>>>=
>>>>;
;

ð23Þ

qj≤
1−δþ δSj þ 2δSi

1þ δ
: ð24Þ
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We have

q�i ¼ σR
i q�j
� �

¼ 1−qj þ 2δSi−δþ δSj−δqj
2þ 2δ

:

By Proposition C.1, qi�∈Ci(2,3,4). This gives the following possibil-
ities:

q�i ∈Ci 2ð Þ : q�i ¼
1þ 2δSi−δþ δSj

2þ 2δ
; q�j ¼ 0;

q�i ∈Ci 3ð Þ : q�i ¼
1−δþ 3δSi

3þ 3δ
; q�j ¼

1−δþ 3δSj
3þ 3δ

;

q�i ∈Ci 4ð Þ : q�i ¼
1−3δþ 4δSi þ 2δSj

3þ 3δ
;

q�j ¼
1þ 3δ−2δSi−δSj

3þ 3δ
:

For qi�∈Ci(2), it follows from qi
�Nβ5 that Sjb

1
3δ

−1þ δð Þ≤0.

If qi
�∈Ci(3), it is implied by (23) that

1
3

1−δð Þ≤Si≤
7
6
−

Sj−
1
6
δþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δð Þ 1þ 1

2
δ

� �s

1þ δ
5
6
þ 1
6
δ−Sj

� �
. It follows from (22) that

SjN
2
3
. The remaining constraints are redundant.

Consider qi�∈Ci(4). By SjNβ8 and (23) it follows that

2−2SjbSi≤
7þ10δþ3δ2−6Sj−10δSj−4δ2Sjþ 5þ9δ−6Sj−8δSj

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þδð Þ 1þ 1

2
δ

� �s

6þ 8δþ 2δ2 þ 4δ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δð Þ 1þ 1

2
δ

� �s :

Such an Si only exists if SjN
5þ δ
6

. From (22) it follows that

Si≤
5þ 9δ−6Sj−8δSj

4δ
. Now, there only exists an Si such that

2−2SjbSi≤
5þ 9δ−6Sj−8δSj

4δ
, if Sjb

5þ δ
6

, a contradiction.

In conclusion, qj�∈Bj(3) if and only if qi�∈Ci (3) and
1
3

1−δð Þ≤Si≤
7
6
−

Sj− 1
6 δþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þδð Þ 1þ

1
2
δ

� �s
1þδ

5
6 þ 1

6 δ−Sj

 �

; SjN 2
3.

q�
j∈Bj 4ð Þ
It holds that

Sj−
1
2
≤q�j bSj−

1
3
; ð25Þ

qjb
2Si−2þ 2Sj þ δSj− 1−2Sj

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δð Þ 1þ 1

2 δ

 �q

1þ δþ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δð Þ 1þ 1

2 δ

 �q ; ð26Þ

qj≤
5
3
−1

6
δ−2Si: ð27Þ

We have

q�i ¼ σR
i q�j
� �

¼
1−qj−

1
2
δþ δSi

2þ δ
:

By Proposition C.1, qi⁎∈Ci(2,3,4). This gives the following possibil-
ities:

q�i ∈Ci 2ð Þ : q�i ¼
1− 1

2 δþ δSi
2þ δ

; q�j ¼ 0;

q�i ∈Ci 3ð Þ : q�i ¼
1þ 2δ−δ2 þ δSi þ 2δ2Si−2δSj

3þ 5δþ 2δ2
;

q�j ¼
2−3δ−δ2 þ 8δSj þ 4δ2Sj þ 2δSi

6þ 10δþ 4δ2
;

q�i ∈Ci 4ð Þ : q�i ¼
1−δþ 2δSi

3þ 2δ
; q�j ¼

2þ 3δ−2δSi
6þ 4δ

:

For qi
�∈Ci(2), qiNβ5 and inequality (25) imply respectively that

1
3
bSjb

−1þ 3
2
δþ 1

2
δ2−δSi

2δ 2þ δð Þ . However, no such Sj exists, since this

would imply that Sib
1
δ

−1þ 1
6
δ−1

6
δ2

� �
≤0.

Consider qi�∈Ci(3). It follows from (26) and qibβ5 that

7þ 9
1
2
δþ 2δ2−1

2
δ3−6Sj−9δSj−3δ2Sjþ 5þ2δþδ2−6Sj−2δSj

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þδð Þ 1þ1

2
δ

� �s

6þ 9δþ 3δ2−2δ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δð Þ 1þ 1

2
δ

� �s

bSi≤2−2Sj

ð28Þ

and from (25) and qibβ5 that

6Sj þ 2δSj−5−2δ−δ2

2δ
≤Si≤2−2Sj: ð29Þ

There exists an Si such that (28) if and only if SjN
5þ δ
6

and there

exists an Si such that (29) holds if and only if Sj≤
5þ δ
6

, a

contradiction.
If qi⁎ ∈ Ci(4), inequality (27) implies Si≤

1
3

2−1
3
δ

� �
. It

follows from (26) and (25) respectively that SjN

7þ 6
1
2
δþ 3

2
δ2−6Si−5δSi−δ2Si þ 5þ 5δ−2δSið Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δð Þ 1þ 1

2
δ

� �s

6þ 7δþ 2δ2 þ 6þ 4δð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δð Þ 1þ 1

2
δ

� �s
and Sj≤
5þ 5δ−2δSi

6þ 4δ
. The other constraints are redundant.

In conclusion, qj
�∈Bj(4) if and only if qi

�∈Ci(4) and Si≤

1
3

2−1
3
δ

� �
,
7þ6

1
2
δþ3

2
δ2−6Si−5δSi−δ2Siþ 5þ5δ−2δSið Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þδð Þ 1þ1

2
δ

� �s

6þ 7δþ 2δ2 þ 6þ 4δð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δð Þ 1þ 1

2
δ

� �s b
Sj≤
5þ 5δ−2δSi

6þ 4δ
Þ:

q�
j∈Bj 5ð Þ

It holds that

Sj−
1
2
≤q�j bSj−

1
3
; ð30Þ
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5
3
−1

6
δ−2Sibqjb

2Si−2þ 2Sj þ δSj− 1−2Sj
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ δð Þ 1þ 1
2
δ

� �s

1þ δþ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δð Þ 1þ 1

2
δ

� �s ; ð31Þ

qj≥
2Si−3−δþ 4Sj þ 3δSj

3þ 3δ
: ð32Þ

We have

q�i ¼ σR
i q�j
� �

¼ 1−qj þ 2δSi−δþ δSj−δqj
2þ 2δ

:

By Proposition C.1, qi�∈Ci(2, 3, 4). This gives the following possi-
bilities:

q�i ∈Ci 2ð Þ : q�i ¼
1þ 2δSi−δþ δSj

2þ 2δ
; q�j ¼ 0;

q�i ∈Ci 3ð Þ : q�i ¼
1−δþ 3δSi

3þ 3δ
;q�j ¼

1−δþ 3δSj
3þ 3δ

;

q�i ∈Ci 4ð Þ : q�i ¼
1−3δþ 4δSi þ 2δSj

3þ 3δ
;

q�j ¼
1þ 3δ−2δSi−δSj

3þ 3δ
:

For qi�∈Ci(2), it follows from qiNβ6 that Sjb
1
3δ

−1þ δð Þ≤0.

For qi
�∈Ci(3), it holds that Sj≤1−1

2
Si. It is implied by (31) that

SiNmax
4þ5

1
2
δ−1

2
δ2−3δSj

6þ 6δ
;
7
6
−1

6
δ−Sjþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þδð Þ 1þ1

2
δ

� �s

1þδ
5
6
þ1
6
δ−Sj

� �
8>>>><
>>>>:

9>>>>=
>>>>;
.

From (30) it follows that SjN
2
3
. The other constraints are redundant.

If qi
�∈Ci(4), it holds that SjN1−

1
2
Si. From (32) it follows that

Sj≤1−1
2
Si, a contradiction.

In conclusion, qj
�∈Bj(5) if and only if qi

�∈Ci(3) and

SiNmax
4þ5

1
2
δ−1

2
δ2−3δSj

6þ 6δ
;
7
6
−1

6
δ−Sjþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þδð Þ 1þ1

2
δ

� �s

1þ δ
5
6
þ1
6
δ−Sj

� �
8>>>><
>>>>:

9>>>>=
>>>>;
;

2
3
bSj≤1−1

2
Si:

q�
j∈Bj 6ð Þ
It holds that

Sj−
1
2
≤q�j bSj−

1
3
; ð33Þ

5
3
−1

6
δ−2Sibqj≤

5
3
−2Si; ð34Þ

qjb
2Si−3−δþ 4Sj þ 3δSj

3þ 3δ
: ð35Þ

We have

q�i ¼ σR
i q�j
� �

¼ Si−
1
3
:

By Proposition C.1, qi�∈Ci(2, 3, 4). This gives the following possi-
bilities:

q�i ∈Ci 2ð Þ : q�j ¼ 0;

q�i ∈Ci 3ð Þ : q�j ¼
4
3
−2

3
δþ 2δSj−Si

2þ 2δ
;

q�i ∈Ci 4ð Þ : q�j ¼
2
3
−1

2
Si:

ð36Þ

For qi�∈Ci(2). It holds that

Sj≤
1
2δ

Si−
4
3
þ 2
3
δ

� �
≤ 1
2δ

−1
2
þ 2
3
δ

� �
≤1
3
;

where the first inequality follows from (36) and the second one from
(34). This contradicts with (33).

Consider qi
�∈Ci(3). It holds that Sj≤1−1

2
Si. From (33) it follows

that SjN1−
1
2
Si, a contradiction.

Next, if qi�∈Ci(4), it follows from (33) that Sj≤
7
6
−1

2
Si. By (34)

and by (35) it is implied respectively that
1
3

2−1
3
δ

� �
bSi≤

2
3

and

SjN
10þ 6δ−7Si−3δSi

8þ 6δ
. The other constraints are redundant.

In conclusion, qj
�∈Bj(6) if and only if qi

�∈Ci(4) and

1
3

2−1
3
δ

� �
bSi≤

2
3
;
10þ 6δ−7Si−3δSi

8þ 6δ
bSj≤

7
6
−1

2
Si:

q�
j∈Bj 7ð Þ

It holds that

Sj−
1
2
≤q�j bSj−

1
3
;

q�j N
5
3
−2Si:

ð37Þ

We have

q�i ¼ σR
i q�j
� �

¼ 1
2
−1

2
qj≤

1
2
:

By Propositions C.1 and C.2, qi�∈Bi(7). This gives the following
possibilities:

q�i ∈Bi 7ð Þ : q�i ¼ q�j ¼
1
3
:

For qi�∈Bj(7), it follows from Si−
1
2
≤q�i bSj−

1
2
that

2
3
bSi≤

5
6
. From

(37) it follows that
2
3
bSj≤

5
6
. The rest of the constraints is redundant.

Therefore, qj�∈Bj(7) if qi�∈Bi(7) and
2
3

bSi≤
5
6
;
2
3
bSj≤

5
6
.

q�
j∈Cj 1ð Þ

It holds that

q�j ≥Sj−
1
3
; ð38Þ

q�j b
1−δþ δSj−2Si

1þ δ
: ð39Þ
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We have

q�i ¼ σR
i q�j
� �

¼ Si≤
1
2
:

By Propositions C.1 and C.2, qi�∈Ci(1, 2, 3). This gives the following
possibilities:

q�i ∈Ci 1ð Þ : q�j ¼ Sj;

q�i ∈Ci 2ð Þ : q�j ¼ 0;

q�i ∈Ci 3ð Þ : q�j ¼
1−Si þ 2δSj−δ

2þ 2δ
:

If qi�∈Ci(1), then, by qibβ4, it holds that Sjb
1
2
−1

2
δ−1

2
Si. From

(39), it follows that Sib
1
2
−1

2
δ−1

2
Sj.

Consider qi�∈Ci(2). It holds that

Sjb
1
2δ

Si−1þ δð Þb 1
3δ

−1þ δð Þ≤0;

where the first inequality follows from qiNβ5 and the second one
from (39).

For qi
�∈Ci(3), it follows from qi

�≥β4 that Sj≥
1
2
−1

2
δ−1

2
Si. By

(39), it is implied that Sib
1
3
−1

3
δ. From (38), it follows that

Sj≤
5
6
−1

6
δ−1

2
Si. The rest of the constraints is redundant.

In conclusion, qj
�∈Cj(1) if and only if qi

�∈Ci(1) and Sib
1
2
−

1
2
δ−1

2
Sj; Sjb

1
2
−1

2
δ−1

2
Si or qi

�∈Ci(3) and Sib
1
3
−1

3
δ;
1
2
−

1
2
δ−1

2
Si≤Sj≤

5
6
−1

6
δ−1

2
Si.

q�
j∈Cj 2ð Þ
It holds that

q�j ≥Sj−
1
3
;

q�j N
1−δþ δSj þ 2δSi

1þ δ
:

ð40Þ

We have

q�i ¼ σR
i q�j
� �

¼ 0:

ByProposition C.2, qi�∈Ci(2, 3). This gives the following possibilities:

q�i ∈Ci 2ð Þ : q�j ¼ 0;

q�i ∈Ci 3ð Þ : q�j ¼
1þ 2δSj−δþ δSi

2þ 2δ
:

For qi�∈Ci(2), it follows from (40) that Sib
1
2δ

−1þ δ−δSj

 �

≤0.

For qi�∈Ci(3), it is implied by (40) that Sib
1
3δ

−1þ δð Þ≤0.

In conclusion, qj�∉Cj(2) if qi�∈Ci(2, 3).

q�
j∈Cj 3ð Þ

It holds that

q�j ≥Sj−
1
3
; ð41Þ
1−δþ δSj−2Si
1þ δ

≤q�j ≤
1−δþ δSj þ 2δSi

1þ δ
; ð42Þ

Si≤1−1
2
Sj: ð43Þ

We have

q�i ¼ σR
i q�j
� �

¼ 1−qj þ 2δSi−δþ δSj−δqj
1þ δ

:

By Proposition C.2, qi�∈Ci(3). This gives the following possibility:

q�i ∈Ci 3ð Þ : q�i ¼
1−δþ 3δSi

3þ 3δ
; q�j ¼

1−δþ 3δSj
3þ 3δ

:

For qi�∈Ci(3), it follows from q�i ≥Si−
1
3
and (41) respectively that

Si≤
2
3
and Sj≤

2
3
.

Since qi
�∈Ci(3) and by (41), Si≤

2
3
and Sj≤

2
3
. Next, it follows from

qi
�≥β4 that Sj≥

1
3
−1

3
δ. By (42), Si≥

1
3
−1

3
δ. The remaining con-

straints are redundant.
In sum, qj�∈Cj(3) if qi�∈Ci(3) and

1
3

1−δð Þ≤Si≤
2
3
;
1
3

1−δð Þ≤Sj≤
2
3
.

q�
j∈Cj 4ð Þ

This case does not need to be derived as by Proposition C.2 it can only
be combinedwith situations Ai and Bi, which have been calculated above.
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