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Chapter 1. Introduction

1.1 Uncover potential high value from data sharing
The amount of data is growing every single day. The data produced glob-
ally is expected to be 175 zettabytes in 2025, growing dramatically from 33
zettabytes in 2018 [1]. These massive amounts of data are used to improve
digital technologies and develop data-driven innovations that can impact ev-
ery aspect of people’s lives [2]. For example, data can help improve health
outcomes, optimize health services, and reduce energy consumption at home.
The data generated in the past can influence the way we live, produce, and
consume goods and services in the future.

The value of data lies in its use and re-use. At present, data is scattered and
maintained by many different organizations of the public sector and private
companies such as hospitals, governments, banks, and insurance companies.
Based on statistics reported by the European Commission in 2020, 80% of
the processing and analysis of data is conducted at the data sources in a cen-
tralized manner [3]. Lack of sharing of, access to, and reuse of data from
multiple organizations hinders the analysis possibilities and hence potential
insights from the data.

The significance and benefits of data sharing and data (re-)use are increas-
ingly valued by the public and private sectors [2, 4]. From a societal perspec-
tive, sharing data across organizations can contribute to delivering timely
healthcare services, combating climate change, and improving public ser-
vices and policymaking. Financially, the economic value of data sharing is
expected to increase to approximately 533 billion euros in Europe by having
higher quality products, increasing productivity, and delivering better and
on-time public services [1].

From a scientific perspective, sharing and mining distributed data can in-
centivize new scientific insights and a wide variety of applications. For ex-
ample, learning from sufficient healthcare data from patients helps health
professionals in the decision-making process, which potentially tailors the
timely prevention and treatment strategies to the patient’s particular needs
and preferences [5, 6, 7]. However, human health and well-being are not
only determined by genetic and biological factors and received medical care,
but also by individual behavior, social circumstances, and physical environ-
ment [8]. These data are collected by different, independent organizations.
Analyzing patient data from one single organization might lead to incomplete
knowledge and unreliable decision-making. Combining personal health data
(e.g., health status, current and prior medications) with other information
(e.g., socio-economic factors and lifestyle data) offers new opportunities to
improve our understanding of human health and to develop more accurate
and reliable analytical models for health prognosis and predictions [9, 10].

2



1.2 Challenges in personal data sharing
Although the potential value of sharing data is high, sharing personal data
across multiple organizations has a number of challenges. These challenges
include (among others): technical barriers, security, data protection compli-
ance to one or more legal jurisdictions, privacy concerns, and trust issues.
Technical challenges, for example, include insufficiency of data interoperabil-
ity and quality, which causes difficulties when combining and analyzing data
that are dispersed in their terminologies and representation (structured, semi-
structured, unstructured). Second, security is a major concern for sharing per-
sonal data for all data organizations (organizations that collect, maintain, and
provide data for primary and secondary use). Innovative technologies to fos-
ter data sharing such as Federated Learning, Blockchain or Secure Multiparty
Computation bring new challenges for preserving a high level of security [2].
Third, the European Union has established a legal framework for protecting
personal data, including the General Data Protection Regulation (GDPR) and
ePrivacy Directive. However, a legal framework such as GDPR leaves room
for interpretation at the discretion of the member countries, which causes
inconsistent actions between member countries [11]. While data sharing in-
volves a third country 1 legislation such as the U.S. Privacy Act or China’s
Personal Information Protection Law, the contradictions need to be addressed
between different jurisdictions and legal frameworks [3]. Furthermore, indi-
viduals highly value their data rights and privacy. The public consultation
on the European strategy for data reports a majority of respondents would be
willing to share their data, if sufficient mechanisms were in place to protect
privacy [13]. Nonetheless, individuals whose data have been collected cur-
rently have very limited control over their data. Technical tools and standards
to empower individuals to exercise their data rights are lacking.

1.3 Analyzing distributed data from multiple sources
Addressing the above challenges effectively requires a great level of technical
sophistication to simultaneously address legal and/or privacy constraints.
Instead of centralizing all personal data from various data organizations,
data-processing algorithms can be sent to each site, and only return the
results of analysis rather than the source data. One such initiative for a
data-sharing platform is the Personal Health Train (PHT) [14, 15, 16], where
applications containing data queries and algorithms are sent to the data
organizations. The data organizations can inspect whether the application is

1A third country, defined by the European Commission, is a country that is not a member of the
European Union as well as a country or territory whose citizens do not enjoy the European
Union’s right to free movement [12].
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Chapter 1. Introduction

allowed to be executed on (a subset of) the available data. The PHT initiative
facilitates authorized algorithmic processing securely at multiple data sites
without requiring the transfer of the source data to a centralized location.

Infrastructures such as Vantage6 have been developed implementing the
PHT initiative and applied to horizontally partitioned data where multiple
organizations hold the same information elements (i.e., variables, attributes,
or features) from different data providers (such as study participants) [17,
18, 19]. Correspondingly, vertically partitioned data represents multiple
organizations that have different information elements from the same data
providers. For example, a hospital has information elements on the same
individuals as the tax office while the type of information elements collected
differs per data organization. When analyzing vertically partitioned data,
data records must be linked across multiple datasets and some intermediate
results and/or encrypted information are exchanged between data
organizations. In such a situation, the data needs to be safeguarded not only
by the infrastructure but also by the analysis algorithms that are sent over
the infrastructure. In Chapter 3, we investigate the technical and ethical-legal
challenges of analyzing vertically partitioned data in practice. Following the
PHT initiative, we develop an infrastructure that transfers and executes
machine learning models on vertically partitioned data in a trust secure
environment. Chapter 4 presents an application that uses the developed
infrastructure and analysis algorithms on real-life personal data. To enhance
the privacy preservation and tackle the practical challenge of setting up the
trust secure environment, Chapter 5 further extends to a generalized linear
model without requiring a trusted secure environment or any third party.

1.4 Generating synthetic data for data sharing
Like other infrastructures such as Privacy-Preserving Federated Neural Net-
work Learning (POSEIDON) [20] and Swarm Learning [21] which analyze
distributed data from multiple sources, the infrastructure we developed and
practically implemented (in chapter 3-5) shares two common concepts: 1)
keeping the source data locally with the data owner, 2) transferring the ma-
chine learning models to the data rather than outsourcing the data. How-
ever, the practical implementation of these infrastructures remains challeng-
ing such as low data interoperability, inconsistent data standards, and uneven
data quality from different data parties. These challenges hinder researchers
to build up accurate and reliable machine learning models using these infras-
tructures [22, 23, 24]. Researchers need samples of data early on to determine
the usability of the data elements and the feasibility of answering their re-
search questions. Especially, when the researcher is conducting exploratory
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research studies. The utility of the requested data is not known to the re-
searcher until they conduct the preliminary examination. This uncertainty
may cause a severe delay and unnecessary costs for research projects.

To address this challenge, Chapter 6 proposes to generate synthetic data that
is structurally and statistically similar to the source data. The synthetic data
derives meaningful insights from the source data so that researchers can se-
lect the relevant data elements and achieve an optimal performance in ma-
chine learning models without accessing the source data or before starting
the data requesting process. The synthetic data in this study represents data
that is similar to the source data at the population level (i.e., distributions of
single variables, correlations between variables), and at the machine learning
utility level (i.e., the analysis results on synthetic data are close to the results
on the source data). Meanwhile, the synthetic data should be realistic at the
individual level. For example, a record whose sex is male and has a positive
Pregnancy test is not realistic and does not appear in the source data. Hence,
the synthetic data should not have such a record. To protect the privacy of
the source data, the synthetic data should offer strong privacy guarantees
to prevent adversaries from extracting any sensitive information about the
source data. Chapter 6 discusses this trade-off between data utility and data
privacy in the generation of synthetic data, which leads to the potential and
challenges of future use of synthetic data.

1.5 Empowering individuals to control over their data
After addressing challenges from data organizations and the research com-
munity, every citizen in our society should be empowered to take control over
data describing or being related to themselves and to make better decisions
based on insights learned from their data. Citizens highly value their data
rights and privacy [13]. However, surveys from the European Commission
show our citizens have limited access to their personal data [3]. They suffer
from a lack of technical tools and standards to exercise their data rights. For
the time being, researchers and organizations must act on their behalf, but in
the future technological innovation will give them greater control over how
their data are used. With this goal in mind, Chapter 7 extends the developed
infrastructure with a citizen-centric data platform (TIDAL) that gives individ-
uals better access to more of their data and ensures citizen-controlled data are
processed in a predefined manner. Chapter 7 shifts data access control from
data organizations to citizens, and give them the means to decide at a granu-
lar level how their data is shared and used. Citizens, as being a custodian of
their own data, can be connected with researchers, and data organizations to
increase the trust placed by citizens in the processing of their personal data.
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Chapter 1. Introduction

1.6 Objectives and outline of chapters
The overall aim of this thesis is to develop new privacy-preserving data shar-
ing and analysis techniques that creates new possibilities for (re-)use of per-
sonal data while maximally protecting individual privacy. In this research,
preserving privacy in data sharing means:

• restricting the access to source data that are available to share or be an-
alyzed;

• restricting the results of the analysis to only processed data, rather than
source data;

• preventing individuals/organizations from seeing the data of other in-
dividuals/organizations in the network of data sharing without appro-
priate permissions;

• being able to learn new insights by advanced analysis techniques where
the above-mentioned points are carefully considered;

• providing a realistic, but synthetic alternative to source data.

To achieve this overall research aim, this thesis gradually addresses the re-
search challenges of analyzing distributed personal data from three aspects -
data organizations, researchers and scientists, and individuals (such as data
providers, study participants). We defined the key research objectives as fol-
lows:

• For the data organizations: to develop a secure infrastructure that can
combine and analyze individual data from multiple sources without
revealing sensitive personal information;

• For the scientific community: 1) to develop and apply privacy-
preserving distributed data mining methods to analyze vertically
partitioned data with and without a third party; 2) to build a synthetic
data generator to simulate the personal data so that the researchers can
have an insight about data before the lengthy data request process or
build-up analysis model without accessing the source data;

• For the individual: to design a novel citizen-controlled technology that
enables individuals to access and control their personal data and moni-
tor the (re-)use of their data.

This thesis is structured into four sections (see Table 1.1) and the contribution
statement of each chapter is presented in Table 1.2. A systematic literature re-
view is presented in Chapter 2 to analyze and define the current status of ex-
isting privacy-preserving distributed data mining (PPDDM) techniques. This
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Table 1.1: Outline of each chapter
Topic Chapter Title
Introduction Chapter 1 General introduction and outline of the thesis
Background Chapter 2 A systematic review of privacy-preserving dis-

tributed data mining
Chapter 3 A Privacy-Preserving Infrastructure for Analyzing

Personal Health Data in a Vertically Partitioned Sce-
nario

Privacy-preserving
federated learning

Chapter 4 Studying the association of diabetes and health-
care cost on distributed data from the Maastricht
Study and Statistics Netherlands using a privacy-
preserving federated learning infrastructure

Chapter 5 Generalized Linear Models on Vertically Partitioned
Data using Distributed Block Coordinate Descent

Synthetic data gen-
eration

Chapter 6 DP-CGANS: Generating synthetic tabular data using
conditional GANs combining with differential pri-
vacy

Citizen-controlled
data platform

Chapter 7 ciTIzen-centric DatA pLatform (TIDAL): Using Dis-
tributed Personal Data in a Privacy-Preserving Man-
ner for Health Research

Discussion Chapter 8 Discoveries and general summary

chapter elaborates on the issue of executing data mining algorithms on sensi-
tive, and/or confidential data from multiple data organizations while main-
taining privacy and presents the developments in the past 20 years. Chap-
ter 3 applies a federated learning infrastructure, which supports secure and
privacy-preserving analysis of personal health data from multiple indepen-
dent organizations with different governance policies. To prove the feasibility
of the infrastructure, Chapter 4 presents a real-life application using the pro-
posed privacy-preserving infrastructure on personal health data which are
vertically partitioned at The Maastricht Study (at Maastricht University) and
Statistics Netherlands. After implementation and utilization of the proposed
infrastructure, Chapter 5 proposes a new privacy-preserving generalized lin-
ear model to address the observed limitations in the previous chapters by re-
moving a third party in the infrastructure. Chapter 6 develops a conditional
Generative Adversarial Network framework addressing differential privacy
to generate synthetic tabular data that is structurally and statistically similar
to the source data. This model enables researchers to get insights into the
source data and provide a simulation dataset to develop the actual analy-
ses, potentially in a privacy-preserving infrastructure. Chapter 7 focuses on
the future perspective of transferring data control from data organizations
to individuals. This chapter presents a citizen-centric data platform (TIDAL)
which includes mechanisms to provide fine-grained access to external par-
ties. Finally, Chapter 8 presents the general discussion of this thesis including
the overall conclusion, highlights, lessons learned, remaining challenges and
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Chapter 1. Introduction

future perspectives.

1.6.1 Contribution statements

Table 1.2: Author statement of each chapter of this thesis.

Conceptualization

Methodology

Form
al Analysis

Experim
enting

Softw
are

Writi
ng

Ch 1 X X
Ch 2 X X X X X
Ch 3 X X X X X
Ch 4 X X X X X X
Ch 5 X X X X
Ch 6 X X X X X X
Ch 7 X X X X X X
Ch 8 X X

Table 1.2 presents the contributions the Ph.D. candidate made for each chap-
ter. The contribution categories in the table are based on Contributor Roles
Taxonomy [25]. Chapter 1 (Introduction), Chapter 8 (Discussion), Sum-
mary, and Impact paragraph were fully structured and drafted by the Ph.D.
candidate. The evolution of overarching research goals and the conclusion of
research discoveries were refined based on the outcome of several discussion
rounds with my supervisors. In Chapter 2, the Ph.D. candidate designed the
systematic review study including defining the research questions, setting
up the search strategy, the analysis plan, and evaluation criteria for the exist-
ing methods. The Ph.D. candidate searched and read all included literature,
performed the analysis, and wrote and revised the manuscript based on the
input and feedback from the co-authors. In Chapter 3, the Ph.D. candidate
developed and programmed the infrastructure (in a collaboration with other
co-authors), designed simulation experiments, and conducted the analyses.
The code of the software and the draft of the manuscript were fully writ-
ten by the Ph.D. candidate. In Chapter 4, the Ph.D. candidate designed and
implemented the whole study including requesting data and computational
resources, designing and programming the analysis models, setting up and
conducting the experiments, writing and finalizing the manuscript. Based on
Chapter 3 and 4, the Ph.D. candidate collaborated with another Ph.D. stu-
dent to advance the theoretical work in Chapter 5. The Ph.D. candidate con-
tributed to designing the method and experiments, conducted the analysis
(with the first author), and drafted and finalized the manuscript (with the
first author). The idea generation and research questions in Chapter 6 and
chapter 7 were based on the discussions between the Ph.D. candidate and
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supervisors. The Ph.D. candidate designed and set up the study, studied lit-
erature, developed and programmed the frameworks and models, designed
and conducted the experiments, discuss the results with supervisors and im-
proved the work. The Ph.D. candidate drafted, revised, and finalized the
manuscripts for Chapter 6 and 7 based on the feedback from the supervisors.
The Ph.D. candidate was responsible for the manuscript submission of Chap-
ter 2-7 and source code creation and maintenance for the work from Chapter
2,3,4,6,7.
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Abstract
Combining and analysing sensitive data from multiple sources offers con-
siderable potential for knowledge discovery. However, there are a number
of issues that pose problems for such analyses, including technical barriers,
privacy restrictions, security concerns, and trust issues. Privacy-preserving
distributed data mining techniques (PPDDM) aim to overcome these chal-
lenges by extracting knowledge from partitioned data while minimizing the
release of sensitive information. This paper reports the results and findings
of a systematic review of PPDDM techniques from 231 scientific articles pub-
lished in the past 20 years. We summarize the state of the art, compare the
problems they address, and identify the outstanding challenges in the field.
This review identifies the consequence of the lack of standard criteria to eval-
uate new PPDDM methods and proposes comprehensive evaluation criteria
with 10 key factors. We discuss the ambiguous definitions of privacy and
confusion between privacy and security in the field, and provide suggestions
of how to make a clear and applicable privacy description for new PPDDM
techniques. The findings from our review enhance the understanding of the
challenges of applying theoretical PPDDM methods to real-life use cases, and
the importance of involving legal-ethical and social experts in implementing
PPDDM methods. This comprehensive review will serve as a helpful guide
to past research and future opportunities in the area of PPDDM.

2.1 Introduction
Mining distributed, sensitive data offers tantalising potential for new insights
and a wide variety of applications, but is generally fraught with concerns of
model accuracy and data privacy. Consider the case of analyzing patient data
in the healthcare domain: hospitals have used patient data to improve diag-
nostic accuracy and efficiency [1, 2] and to fuel the transition to preventive [3]
and precision medicine [4, 5, 6]. However, learning patient data from a single
hospital might cause limited model performance and incomplete knowledge
discovery [7]. Patients’ health are not only affected by genetic and biological
factors, but also by individual behaviour and social circumstances [8]. Com-
bining various patient data from multiple sources offers one pathway to ob-
tain more accurate and reliable analytical models for health outcomes [9, 10].
However, combining distributed sensitive data faces a number of challenges
including: data protection compliance to one or more legal jurisdictions, pri-
vacy concerns, security, and trust issues. Beyond the healthcare domain, this
also applies to applications in many other fields, such as finance and law [11,
12]. Conventional centralised data mining techniques are challenged in this
environment and require viable alternatives.
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Privacy-preserving distributed data mining (PPDDM), which focuses on the
analysis of decentralised data without leaking sensitive information from any
party to the other parties, offers one way forward for multiple data par-
ties to overcome the challenges posed by centralising the data for analysis
[13]. PPDDM techniques, whether data mining or machine learning, aim
to make it technically or mathematically infeasible to deduce the original
data from a communication message, and certainly from the final analysis
result. To make use of PPDDM in practical applications, we should consider
the data problems (e.g., classification, regression), the adversarial concerns
the involving data parties have (e.g., malicious, honest), and the balance be-
tween data privacy and model performance. PPDDM is sometimes referred
to privacy-preserving federated learning after Google first proposed the con-
cept in 2016 [14, 15]. However, privacy-preserving federated learning can
be regarded as a specific category of PPDDM, in which there is a federation
of autonomous organisations that express an interest to contribute to a joint
analysis [16].

A number of PPDDM methods have been reported in the last 20 years.
The existing survey papers have compared the theoretical backgrounds,
strengths, and limitations. However, the analysis of distributed data has
been poorly addressed as only one special case of privacy-preserving data
mining [17, 18, 19, 20]. The distributed data problem has been addressed
to a limited extent in the survey of Hina Vaghashia [21] and Suchitra
Shelke [22]. Vassilios S. et al [20] presented five dimensions of state-of-the-art
privacy-preserving data mining algorithms where the problem of
analysing distributed data was merely considered to be addressed by
cryptography-based techniques and only the association rule mining
problem and decision tree induction were presented in this survey. Several
surveys summarized the evaluation parameters to assess privacy-preserving
techniques including privacy level, hiding failure, data quality, complexity,
efficiency, and resistance of different data mining algorithms [18, 20, 23,
24]. Others have a major focus on the definition and construction of Secure
Multiparty Computation (SMC) and how SMC can be combined with data
mining algorithms [13, 25, 26]. In a recent survey [27], privacy-preserving
approaches were summarized for data collection, data publishing, data
mining output, and distributed learning. The majority of the published
surveys have typically treated PPDDM as a specialised subtopic of either
distributed data mining or privacy-preserving data mining. As an emerging
field, PPDDM is under-reported in the existing surveys and now requires a
more comprehensive and complete analysis.

This study aims to provide an overview of existing approaches and iden-
tify outstanding challenges in the field of PPDDM. We report the results and
findings of a comprehensive review of PPDDM techniques from 231 scientific
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articles published in the past 20 years. We present the characteristics of the
18 most cited studies and analyze their influence on other studies in the field.
The results show a wide range of privacy-preserving methods and data min-
ing algorithms have been well-studied. We highlight the findings showing
a lack of standard evaluation criteria in the field, the ambiguous definition
of privacy, and insufficient experimental information in some studies. These
findings enhance the understanding of the challenges of applying the theoret-
ical PPDDM methods to real-life use cases, and the importance of involving
legal-ethical experts in implementing PPDDM methods.

The main contributions of this work to the literature in PPDDM field are:

1. to propose comprehensive criteria with 10 key factors to evaluate the
new PPDDM techniques. The evaluation criteria include adversarial
behaviour of data parties, data partitioning, experiment datasets, pri-
vacy/security analysis, privacy-preserving methods, data mining prob-
lems, analysis algorithms, complexity and cost, performance measures,
and scalability.

2. to present different definitions of privacy, distinguish information pri-
vacy from information security in the PPDDM field, and provide sug-
gestions of how to make clear and applicable privacy descriptions to
propose new PPDDM techniques.

3. to identify the most cited PPDDM articles, analyze their characteristics
and how these articles influence other studies in the field, and

4. to provide a guideline based on the proposed evaluation criteria for re-
searchers to conduct future research and publications in PPDDM field.

This systematic review offers new insights into the important factors that
should be considered to propose and evaluate new PPDDM techniques and
how to bridge the gap between theoretical methods and practical applications
in the field. We present this review paper as a helpful guide to past research
and future opportunities in the area of PPDDM.

The outline of this paper is as follows. In the next section, we present existing
privacy-preserving methods and define terms related to PPDDM. In Section
2.3, we describe the approach in conducting this systematic review. In Section
2.4, we provide the results of our review, including evaluation criteria. In
Section 2.5, we compare the key influential papers. In the last section, we
summarize our main findings, present a list of recommendations, and discuss
future directions.
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2.2 Privacy-preserving methods
Privacy-preserving methods, as the major component of PPDDM
techniques, are used to minimize the release of information during data
mining model training and communication among multiple parties.
Various privacy-preserving methods have been proposed from different
communities such as statistics, cryptography, data mining, and secure
data transfer. In this section, we summarize the most commonly-used
privacy-preserving methods in PPDDM.

2.2.1 Secure Multiparty Computation (SMC)
Secure multiparty computation protocols are designed for multiple parties
to jointly compute some function over their own data without revealing the
original data to any other parties [13]. The foundation for SMC started from
cryptography. In addition to protect the participants from being attacked by
external parties (who are outside of the system or protocol), SMC also pro-
tects the participants from each other. For example, some SMC protocols are
implemented to prevent participants from learning private information from
other parties or deliberately sending incorrect computation results to other
parties. The following sub-sections describe some protocols in SMC.

Building Blocks (primitives) SMC of Protocols.

Secure protocols that are deployed as building blocks of secure computation
are used to prevent data being revealed or deduced from the communication
and/or computation between data parties [13]. Commonly used encryption
protocols include oblivious transfer and homomorphic encryption. Oblivi-
ous transfer, first developed by Even et al. [28], considers two data parties,
a requester and a sender, where the requester obtains exactly one instance
without the sender knowing which element was queried, and without the re-
quester knowing about the other instances that were not retrieved. Oblivious
transfer protocols iteratively pass over the data many times during training,
and as a result are computationally expensive. Another technique, homomor-
phic encryption, was introduced by Rivest [29]. This technique supports cer-
tain algebraic operations such as additions and multiplications on encrypted
text (i.e., ciphertext). The decrypted result from the operations on cipher-
text matches the result of the operations performed on the plain text. Homo-
morphic encryption systems are grouped into fully homomorphic encryption
(FHE) or partial homomorphic encryption (PHE) [30]. As the initial scheme
of a homomorphic cryptosystem, PHE can only perform a specific algebra
operation such as addition or multiplication in each iteration. This limits the
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usability for data mining algorithms, as the algorithms consist of several com-
plex operations. On the contrary, FHE supports any desirable operation and
functionality that can run on the ciphertext. Since the ciphertext is never de-
crypted, the input from each data party is not revealed. The first generation
of FHE system was proposed by Gentry in 2009 [31]. However, FHE systems
are not sufficiently efficient due to the high computational cost of performing
iterative operations over encrypted data during the training epochs.

Generic SMC Protocols.

Generic SMC protocols were implemented for any probabilistic
polynomial-time function [13]. Unlike homomorphic encryption systems,
these generic protocols are sensitive to the number of data parties. The
commonly-used protocol of secure two-party computation is Yao’s garbled
circuit protocol [32]. The protocol is based on evaluating the function
that needs to be computed by two data parties as a combinatorial circuit
with a collection of gates (e.g., AND, XOR gate). These gates connect
with circuit-input wires, circuit-output wires and intermediate wires.
Each gate has two input wires and one single output wire. The required
communication of the protocol depends on the size of the circuit, while the
computation cost depends on the number of input wires. Extensions to more
than two data parties, i.e. the cases of multiparty computation, have been
developed by Micali et al. [33], Beaver et al. [34], and Ben-Or et al. [35].
Following Yao’s theory, these protocols are based on designing the function
as a circuit and applying a secure computation protocol to the circuit [13].
Beside computational complexity, communication cost is a considerable
factor in these protocols. All protocols need a one-to-one communication
channel between every pair of parties. Some require a broadcast channel for
all parties.

Specialized SMC Protocols.

Specialized SMC protocols are commonly used as primitives to the data min-
ing algorithms including secure sum, secure set union, secure size of inter-
section, and secure scalar product protocols. These protocols allow certain
operations without revealing any inputs from any of the participating data
parties.

Secure sum as a basic and simple example of secure multiparty computation
was introduced by Clifton et al. to obtain the sum of the inputs [25]. The
protocol is as follows: data party A has V 1 local value. Party A generates a

18



random number R and calculates (R+V 1) and sends this result to data party
B (PB). Then, Party B adds their local value to the received value and sends it
(R+ V 1 + V 2) to the next party. In the end, to obtain the final result, the last
sum value will be sent back to party A to subtract R. The protocol ends with
sending this final result to all participating parties. An example of securely
computing a sum among 4 four parties is shown in Fig.2.1a.

Secure set union has been applied to the case where data parties want to jointly
create unions of sets from rules and itemsets shared by multiple parties but
not leaking the owner of each set. To guarantee a secure computation, one
approach is to apply a commutative encryption system in computing the set
union [25, 36]. A commutative encryption system can encrypt original data
multiple times using different users’ public keys. The final encrypted data can
be decrypted without considering the order of the public keys in the encryp-
tion process [37]. In the secure set union protocol, one data party encrypts its
own itemsets using commutative encryption and transfers them to other par-
ties. The receiver party encrypts both its own sets and the received encrypted
sets and passes it to the next party. Once the data is encrypted by all parties,
decryption can start at each party in any order. The permutation of the en-
cryption order prevents the participating parties from tracking the ownership
of itemsets. However, if one item is present at multiple data parties, then the
number of the item will be exposed because of duplication. Fig.2.1b presents
an example of securely computing a set union among three data parties.

Secure size of set intersection is solving the problem that multiple data parties
want to obtain the size of set intersection of their local datasets without re-
vealing the ownership. Similar to secure set union, each data party encrypts
its own item sets by using commutative encryption and sends it to another
data party. The receiver encrypts these items, arbitrarily permutes the order,
and sends it to the next data party. This process ends when all item sets are
encrypted by all data parties. Due to the commutative encryption, if and only
if the original inputs are the same, then the final outcomes from two different
item sets can be equal. Therefore, the number of values that occur in all en-
crypted item sets is the size of the set intersection. No input will get exposed
since only encryption (no decryption) is required. Fig.2.1c demonstrates the
protocol of securely computing the size of set intersection.

Secure scalar product protocols are essential and powerful. It has been widely
applied in many data mining algorithms which can be decomposed to the
calculation of scalar products. As a notable example, Vaidya and Clifton
extended a secure scalar products protocol to solve association rule mining
problems between two parties [38]. The general idea is as follows:

1. Data party A has X = {x1, ..., xn}, while data party B has
Y = {y1, ..., yn}. The goal is to calculate X ∗ Y =

∑n
i=1(xi ∗ yi) without
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(a) An example of secure computation of a sum
among four parties. R is a random number

generated by Party A. V 1, V 2, V 3, and V 4
presents private data from

party A to party D.

(b) An example of secure computation of a set
union among three parties. Party A, B, C

encrypts their private data using a
commutative encryption scheme respectively
(Ea, Eb, Ec). Text in blue is decrypted text.

(c) An example of secure computation of a size of set
intersection among three parties. Party A, B, C
encrypts their private data using a commutative
encryption scheme respectively (Ea, Eb, Ec).

Figure 2.1: Examples of three secure multiparty computation protocols - Fig.2.1a. Secure sum
protocol, Fig.2.1b. Secure set union protocol, Fig.2.1c. Secure size of set intersection protocol.
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revealing inputs to the other party. Both parties share a matrix C which
is generated by random numbers.

2. The protocol starts at Party A who generates n random numbers Ra =
{r1, ..., rn}. Then, party A calculates X ′ = X+C ∗Ra and send to party
B.

3. Party B generates m(< n) random numbers Rb and calculate Y ′ = C1 ∗
Y + Rb1, ..., Cn/m ∗ Y + Rb1, ..., C2n/m ∗ Y + Rb2, ..., Cn ∗ Y + Rbn and
S′ =

∑n
i=1(x

′
i ∗ yi). Y ′ and S are sent to party A.

4. Party A calculates S′′ = S′ −
∑n

i=1(Ra ∗ Y ′) and m sets of sum of
Ra which is Ra′ = Ra1 + Ra2 + ... + Ran/m + Ran/m+1 + ... +
Ra2n/m, ..., Ra((m−1)n/m)+1 + Ra((m−1)n/m)+2 + ...3 + Ran. Party A
sends S′′ and Ra′ for final result calculation.

5. Party B computes the final scalar product as S = S′′ +Ra′ ∗Rb.

The security of this secure scalar product protocol is guaranteed by the in-
ability of either side to deduce k equations with more than k unknowns. As
with many other existing scalar product protocols [39, 40], it is limited to the
collaboration between only two parties because of the lack of efficiency in
practice [25].

2.2.2 Data Perturbation
Data Perturbation preserves data privacy by adding ‘noise” to the individ-
ual records but still keeps the key summary information about the data [41].
One major approach of data perturbation is to use statistical techniques to
replace the original data with synthetic values which have the same or com-
parable statistical information (e.g., distributions) as the original values. The
synthetic data can be generated by a statistical model which learns from the
original data. The other main approach is to distort the values by apply-
ing additive noise, multiplicative noise, or other randomization procedures
[42]. Data swapping, another method of data perturbation, switches a set of
(sensitive) attributes between different data entities to prevent the linkage of
records to identities [43, 44]. The major drawback of these methods is the de-
crease of data quality and accuracy of the learning model. Data perturbation
techniques are more commonly used to protect privacy in data publishing
problems [27].
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2.2.3 Local Learning and Global Integration
The method that integrates local models to one global model uses the foun-
dation of ensemble learning that trains a set of models in order to enhance the
performance of one single model [45, 46]. Each data party can train their own
local data miners independently. Then, these local data miners are sequen-
tially or parallelly integrated to compose a center or global data miner which
can generate the final results. Consequently, the original data of each party is
never transferred to other data parties. A majority of data mining algorithms
have been theoretically developed to this approach including Support Vec-
tor Machine [47, 48, 49, 50], Decision Tree [51, 52, 53], Neural Networks [54,
55, 50, 56] and so forth. A few of them have been successfully implemented,
applied and evaluated in practical use cases [7, 57].

2.3 Methodology
This paper follows the systematic review procedures described by Kitchen-
ham [58]. In this section, we discuss the inclusion and exclusion criteria of
study selection, followed by the search strategies, and evaluation criteria for
reviewing selected studies.

2.3.1 Eligibility Criteria
We selected papers that are peer-reviewed publications in English between
2000 and 2020 working on data mining and machine learning techniques
that solve problems of classification, regression, clustering, or association
rule mining. The eligible papers must take privacy preservation into account
when data mining and machine learning models are executed on partitioned
data. Partitioned data includes horizontally partitioned/homogeneous data,
vertically partitioned/heterogeneous data, and arbitrarily partitioned data
(The definitions are presented in section 3.3). Furthermore, included papers
must 1) propose and/or implement a new approach and/or; 2) apply existing
approaches to a practical case and/or; 3) improve the performance of existing
approaches.

To narrow down the number of publications, we excluded poster and
workshop abstracts, survey papers, and articles that only contain discussions
on current concerns and future research. To set the scope of this survey,
the authors screened titles, keywords, and abstracts to exclude the papers
that 1) only focus on privacy-preserving data mining/machine learning
on centralised data, 2) solve problems of parallel computing, cloud
computing, grid computing, edge computing, and fog computing to
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improve computational performance rather than the complexity of the data
analysis problem, 3) solve privacy issues in data collecting, data publishing,
data storage, and data querying, and 4) focus on Blockchain, web attacks
detection, intrusion detection, data privacy focusing on mobile devices,
geographic data privacy, and differential privacy. If the papers could not be
identified based on its title, keywords, and abstract, the authors reviewed
the full paper.

2.3.2 Search Strategy
We used the following search engines and digital libraries: IEEE Xplore Dig-
ital Library 1, ACM Digital Library 2, Science Direct 3, ISI Web of Science 4,
Springer Link 5, PubMed 6. Based on the inclusion criteria, we formulated the
following terms to search in the title, abstract, and keywords of papers. The
entire workflow for selecting relevant studies is presented with search results
in Figure 2.3 in Section 2.4.1.

1. privacy and (distributed or de-centralized or de-centralised or partitioned) and ma-
chine learning (PPDML)

2. privacy and (distributed or de-centralized or de-centralised or partitioned) and data
mining (PPDDM)

3. privacy and (vertically or heterogeneous) and machine learning (PPVML)

4. privacy and (vertically or heterogeneous) and data mining (PPVDM)

5. privacy and (horizontally or homogeneous) and machine learning (PPHML)

6. privacy and (horizontally or homogeneous) and data mining (PPHDM)

2.3.3 Evaluation Criteria for Reviewing Papers
To evaluate the paper on PPDDM techniques, conventional data mining eval-
uation criteria are not adequate [45]. Beside conventional evaluation meth-
ods, additional factors such as communication costs, data partitioning, ad-
versary behavior, privacy measures should be considered. To the best of our
knowledge, there are no standard criteria for evaluating new PPDDM ap-
proaches. Consequently, studies selected a various set of evaluation methods

1IEEE Xplore: https://ieeexplore.ieee.org/Xplore/home.jsp/
2ACM Digital Library: https://dl.acm.org/
3ScienceDirect: https://www.sciencedirect.com/
4Web of Science - Clarivate: https://clarivate.com/products/web-of-science/
5Springer Link: https://link.springer.com/
6PubMed: https://www.ncbi.nlm.nih.gov/pubmed/
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which they think are necessary for their approaches. In this review, we as-
sessed selected papers considering the following 10 factors including adver-
sarial behavior of data party, data partitioning, experimented datasets, pri-
vacy/security analysis, privacy-preserving methods, data mining problems,
analysis algorithms, complexity and cost, performance measures, and scala-
bility. The authors initially generated and modified these evaluation criteria
by reviewing 10% of the included articles. Then, the evaluation criteria have
been discussed by the co-authors in several iterations of reviewing until an
agreement has been made on these 10-factor evaluation criteria. All selected
papers have been reviewed and assessed again using the criteria.

1) Adversarial behavior of data parties covers the assumed adversarial be-
havior that involved data parties have. In this review, we consider two types
of adversarial behavior of involved parties - semi-honest and malicious. A
semi-honest (passive or honest-but-curious) party follows the protocol prop-
erly, however is also curious about other parties’ data [13]. The semi-honest
party will attempt to learn or deduce data from other parties. A malicious
(or active) party will arbitrarily deviate from the protocol and will make de-
liberate attacks to obtain access to data from other parties [59]. For example,
possible malicious behavior might be not starting the execution of protocols
at all or suspending (or aborting) the execution at any desired point in time.
Papers that use ambiguous expressions such as ”untrusted” or ”non-trusting”
or ”non-collaborative” are not classified into any category, because they did
not clearly indicate the adversarial property of data parties, nor did they pro-
vide provide any privacy or security proof of their methods. In addition,
we include the situation where a third party was involved. A third party, as
another independent entity, can combine data from multiple parties, execute
analysis on the joint datasets, or do the final computation based on informa-
tion from data parties. A third party can be fully-honest, semi-honest, and
malicious.

2) Data partitioning Figure 2.2 shows three scenarios of data partitioning
which are considered in this review: 1) Horizontally partitioned data which
contains the same attributes from different data instances (see Figure 2.2a).
For example, different hospitals see different patients, though they collect the
same patient attributes; 2) Vertically partitioned data which contains the same
data instances but with different attributes (see Figure 2.2b). For example, a
hospital has data on the same individuals as the tax office, while the attributes
collected differs per data party; 3) Arbitrarily partitioned data, the hybrid sit-
uation of horizontally and vertically partitioned data. In this scenario, the
data providing institutes hold different attributes for different data instances
(see Figure 2.2c).
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(a) An example of horizontally partitioned data.

(b) An example of vertically partitioned data.

(c) An example of arbitrarily partitioned data.

Figure 2.2: Examples of three different partitioned data. Fig.2.2a shows horizontally
partitioned data which contains the same attributes/features from different data instances.
Fig.2.2b shows vertically partitioned data which contains the same data instances but with
different attributes/features. Fig.2.2c shows arbitrarily partitioned data which is a hybrid

situation of horizontally and vertically partitioned data.
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3) Dataset information factor indicates whether the study provides adequate
information about the applied datasets in their experiments. Basic informa-
tion of datasets including sources, names, numbers of features and instances,
categorical or numeric type (if available) were recorded. Considering the
readability, collected information is composed into 5 categories:

1. Datasets that are publicly available (e.g., UCI repository) [60]

2. Datasets from practical cases (e.g., real patients data from a clinic)

3. Synthetic datasets and datasets which were generated by authors

4. Experiments are presented but dataset information is missing

5. No experiments are presented in the paper

4) Privacy definition or measurement describes whether the study gave an
explicit privacy definition, analyses, or measurements. Due to a lack of a
universally accepted standard definition, there are many different definitions
of privacy from various aspects such as law and philosophical point of view
covering personal information, body, communications, and territory [61, 62].
This review only focuses on information privacy which concerns the control
of collection, use, retention, and distribution of personal information. Dur-
ing reviewing, we do not assess if the privacy definitions are correct and the
levels of privacy these studies can preserve though whether they gave a suf-
ficient description, measurement, or analysis of privacy.

5) Privacy-preserving methods are classified into 5 categories: 1) secure mul-
tiparty computation - building blocks, 2) secure multiparty computation -
generic and specialized construction protocols, 3) data modification, 4) local
learning and global integration, and 5) others. First 4 categories have been ex-
plained in detail in the Privacy-Preserving Method Section. The papers which
did not use any method from above are categorized to others.

6) Types of problems covers four main data mining areas: i.e., classification,
regression, clustering, and association rule mining. Classification predicts a
class with categorical labels. These categorical labels can be represented by
discrete values, where the ordering among values has no meaning. In con-
trast, regression is to predict continuous-valued function or ordered value.
Clustering is to group a set of data objects into multiple groups so that objects
within a cluster have high similarity, but are very dissimilar to objects in other
clusters. Association rule mining is to discover interesting associations and
correlations between itemsets in transactional and relational databases [63].
Additionally, we labeled the studies as general that solved some mathemati-
cal or statistical problems which are applied to classification, regression, and
clustering. The studies which worked on outlier detection, record linkage,
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recommendation system, attribute/dimension reduction, feature selection,
and probabilistic graph are categorized into others.

7) Data mining algorithms present the algorithms which have been devel-
oped in a privacy-preserving manner and which ones lack attention. There
are plenty of algorithms across the data mining and statistics domain [64,
18]. In this review, the top eight algorithms are listed including decision tree,
K-nearest neighbor, bayesian networks, support vector machine, neural net-
works, K-means, linear/logistic regressions, and A-priori algorithms.

8) Complexity and cost indicates whether the study explicitly measures com-
putational complexity, time, and communication cost. The papers which did
not present experiments but only briefly discussed computation, time, and
communication costs are counted as No Measurement’.

9) Performance measures covers whether the study compared the perfor-
mance of their approaches with 1) other published PPDDM methods, 2) cen-
tralised data mining methods, and 3) distributed without preserving privacy
methods. The performance measures include accuracy, precision, recall, F1
score, AUC (Area Under the Curve), mean squared error, mean absolute er-
ror, and other standard evaluation criteria in the data mining domain [63, 65,
66, 67, 68]. Owing to the high degree of heterogeneity in the reporting of per-
formance measures across the reviewed papers, we determine whether any
performance measure was applied to evaluate the methods rather than com-
paring different performance measures. The papers which contained experi-
ments but did not compare their results with other methods are categorized
into No comparison (with experiment). The studies which did not provide
any experiments are classified to No experiments.

10) Scalability covers whether the study presented a scalability analysis or
the experiments prove the scalability of their approach. The scalability in
this review means if the approach can tackle large-size datasets which con-
tain a large number of either features or instances. It is noteworthy that only
discussing scalability or mentioning their approaches are scalable were not
included.

2.4 Results
In this section, we first describe the number and distribution of search re-
sults retrieved from the six search engines in the last 20 years. Detailed re-
views of selected papers based on the evaluation criteria are elaborated in
section 2.4.2. The analysis of the relations among selected papers is described
in section 2.4.3.
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2.4.1 Search Results

Figure 2.3: Workflow of conducting this systematic review

Figure 2.3 presents the workflow of this systematic review with the number
of papers included in each step. Following the inclusion criteria, 4222 pub-
lications including duplicates were retrieved from six search engines. Most
papers were from IEEE and Springer Link followed by ACM Digital Library.
To remove the duplicates, we used Digital Object Identifiers (DOI) to keep
the unique papers. The number of publications was reduced from 4222 to
2424. Furthermore, we filtered out irrelevant papers by screening the titles
and abstracts of the retrieved papers. Papers that focused on parallel comput-
ing, cloud computing, edge computing, network security, intrusion detection,
web attack detection, privacy in mobile data and geographic data, differential
privacy, privacy in data collecting, data publishing, data storing, data query-
ing were excluded. In the end, 231 papers were selected to be preliminarily
reviewed.

To improve the insight of the search result, we map the selected papers into
graphs by using the Gephi visualization tool [69]. In Figure 2.4, the distri-
bution of 231 selected papers using different search terms is presented. Pa-
pers are presented as nodes and clustered by the search terms. For instance,
182 selected papers were found by using the search term - PPDDM, while 38
of them were findable in PPHDM category and 50 of them were findable in
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Figure 2.4: Numbers and clusters of papers from different search terms. Papers are presented
as nodes and clustered by the search terms. The number of papers is labeled in the figure. The

edges show which terms were used to find the papers.

PPVDM. It is obvious that data mining papers are the majority of the search
outcomes. It is reasonable as data mining covers a larger scope than machine
learning. Privacy issues should be considered in the entire data processing
procedure instead of only the part of analysis and building machine learning
models. Moreover, a large number of papers (71 papers from PPDDM, 22 pa-
pers from PPDML) did not indicated what exact data partitioning problems
their method can solve in their titles, abstracts, and keywords. This increases
difficulties for other researchers and practitioners to find the correct papers
based on their needs.

2.4.2 Review Results
Fig. 2.5 we summarizes the review results of 231 papers using the 10 evalua-
tion factors. The full review results of 231 papers are publicly available in the
data repository: https://doi.org/10.6084/m9.figshare.14239937.v4.

Adversarial behavior of data parties. About half of the reviewed studies as-
suming their approaches are applicable for the data parties with semi-honest
adversary behavior. In contrast, only 17 reviewed studies developed their
methods against malicious parties. Third party constructions were applied in
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the method of 47 studies. More than half of them handled semi-honest behav-
ior data parties together with employing the third party. However, it is worth
noting that over 30% of selected papers did not state a clear assumption that
which adversarial behavior their approach can deal with.

Data partitioning. Horizontally partitioned data (105 reviewed papers) and
vertically partitioned data (112 reviewed papers) seem to be represented
equally in the selected literature. There are 35 papers handling both
horizontally partitioned data and vertically partitioned data. However, only
9 reviewed studies developed PPDDM methods on arbitrarily partitioned
data which can work with semi-honest data parties. Additionally, 20% of
selected studies did not indicate in which data partitioning situation their
methods can be applied.

Privacy is one of the most important evaluation parameters for PPDDM tech-
niques. However, only one fifth of selected studies describe an explicit defini-
tion of privacy and mathematical analysis of how much information is leaked
by the proposed method. There are 81 papers proving the security of their
approaches rather than a privacy analysis. The difference between security
and privacy will be discussed in the next section. The majority of studies
describe privacy preservation briefly in their own understanding. These de-
scriptions are heterogeneous: e.g., not revealing privacy of any database, not
compromising the privacy of the data owners, preserving the confidentiality
of datasets, and no important information leakage. The remaining 30 papers
proposed new PPDDM methods without indicating any definition or descrip-
tion about privacy.

Privacy-preserving methods. Secure multiparty computation techniques are
the most encountered solutions in the PPDDM domain. The generic and spe-
cialized protocols were applied in 101 papers, while 89 studies employed
homomorphic encryption or oblivious transfer protocols. A minority of re-
viewed studies used data modification, or methodologies to train local mod-
els and combine these local models into a global model. A combination of
techniques such as combining data modification and homomorphic encryp-
tion protocols has been applied by 41 studies.

Types of data problems and data mining algorithms. Classification prob-
lems attracted the most attention from researchers in the PPDDM domain,
followed by association rule mining and clustering. By contrast, a minority of
studies deal with regression modeling. The most implemented data mining
algorithms tackling these data problems are: Tree-based algorithms such as
decision tree, random forest (35 papers), A-priori-based algorithms (34), Neu-
ral Networks (21), Bayesian Networks (18), Support Vector Machine (17), K-
Nearest Neighbor (16), Linear/Logistic/Ridge Regression (16), and K-means
(9). There are over 10% of reviewed papers studied on generic algorithms
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that can be applied to multiple data mining techniques such as gradient de-
scent. About 12% of reviewed papers worked on solving privacy problems
in outlier detection, record linkage, recommendation system approaches, at-
tribute/dimension reduction, feature selection, and probabilistic graphs.

(a) Adversarial behavior of data parties (b) Data partitioning

(c) Privacy definition or analysis (d) Privacy-preserving methods

(e) Types of data problems (f) Data mining algorithm
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(g) Applied datasets in their experiments (h) Complexity and cost (efficiency)

(i) Performance measures (compare with)

(j) Scalability

Figure 2.5: Bar charts of presenting review results using 10-factor evaluation criteria. Papers
can cover one or more items in the factors except Privacy Definition/Analysis and Scalability.

Applied datasets in their experiments. From the selected studies, we iden-
tified the datasets that were applied in their experiments, measurement of
complexity and cost, and performance on accuracy and scalability. We found
90 studies used datasets from public repositories, while 40 studies generated
synthetic datasets to conduct their experiments. It is noteworthy that only 15
papers applied real-world datasets in practical use cases. Furthermore, it is
remarkable to find that 82 papers proposed new methods by only presenting
mathematical theories without any experiments, while 10 papers conducted
experiments but did not provide any information about the datasets.

Complexity and cost. To prove the efficiency of proposed methods, 129 pa-
pers calculated computational complexity and/or time cost, while 104 pa-
pers reported communication cost of their approaches. Among them, 85
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papers measured both computational complexity/time cost and communi-
cation cost. However, one third of (80) reviewed papers did not have any
measurement of computation, running time, or communication cost.

Accuracy performance. We found 82 reviewed papers were lacking in eval-
uating accuracy performance of their methods because no experiments were
conducted in these studies. In the rest of the papers, 43 papers proved their
PPDDM methods can achieve comparable accuracy as the centralised data
mining methods, while 48 studies proved their methods exceeded other exist-
ing PPDDM methods or achieved the same accuracy with higher efficiency. A
small proportion of (10) studies proved their privacy-preserving models have
comparable performance on learning partitioned data as the non-privacy-
preserving models. Lastly, 66 papers conducted experiments but did not
compare with any other methods or situations.

Scalability. The last factor - scalability - shows 10% papers proved or ana-
lyzed the scalability of their proposed methods. The majority of papers either
only provided very brief statements in the discussion and future work section
of the paper, or did not consider the scalability challenge.

2.4.3 Referencing Relationship among Selected Papers
We investigated how selected papers influence each other based on their ref-
erences and citations. We extracted text from reference sections of all selected
studies and recognized titles and authors from the text. As DOIs are not avail-
able in the reference section of all papers, only titles and authors were used to
recognize different studies. Figure 2.6 illustrates the citation network, where
papers are represented as nodes, and citing relations are represented as edges.
The size of nodes are proportional to the number of citations among the 231
papers. Papers [38, 70, 71] are most cited, with 1354, 1320, and 875 citations
respectively (until 2021 Feb).

Table 2.1 lists the attributes of the most cited articles. Semi-honest behav-
ior is the most common assumption, while none of these influential papers
addressed malicious adversarial behavior. 3 out of 18 studies considered a
third party. Two papers [72, 47] took all possible data distribution situations
(horizontally, vertically, and arbitrarily partitioned data) into account. Hori-
zontally and vertically partitioned data problems have been covered with a
good balance. Although the vertically partitioned data problem is more com-
plicated than the horizontally one [73, 74], our review indicates that they have
been developed at the same pace.

A similar balance is apparent in the types of problems as well. Seven pa-
pers focused on solving a classification problem by using SVM, decision tree,
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Figure 2.6: Citation network among the selected papers. Papers are presented as nodes, while
the citing relations are edges. The size of nodes are proportional to the number of citations.

bayesian networks, while 8 papers looked at clustering problems particularly
at K-means, Expectation Maximization algorithms (EM), Local Outlier Factor
(LOF) algorithm. Association rule mining problem has fewer influential pa-
pers, but the top 2 influential papers [38, 70] both focused on this problem. In
contrast to the balance in the types of problems, privacy-preserving solutions
from the influential papers are completely dominated by SMC. 16 out of 18
influential papers covered SMC [75, 76] combined SMC with homomorphic
encryption, while [47, 77, 78] combined it with structuring local and global
data miners. More than half of existing studies in our review applied SMC as
the major privacy-preserving method.

It is notable that 12 out of 18 studies did not conduct experiments, but they
provided explicit privacy/security analyses and costs measurements instead.
These privacy/security analyses have been presented in different ways, but
the main objectives were similar. All influential papers described what infor-
mation their approaches can protect, what information have to be disclosed,
and what potential risks, problems or troubles might exist. Moreover, their
computational complexity and communication costs of their approaches were
clearly presented as one of the evaluation parameters. Hence, the described
performance evaluation on privacy and efficiency may be the reasons why
these papers are often cited.
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2.5 Discussion
PPDDM has been rapidly developing through active research programs
across different scientific communities including data mining and machine
learning, mathematics and statistics, cryptography, and data management.
The total number of publications in this domain has dramatically increased
in the last 20 years. Many of the studies included promising results in the
efficiency and accuracy of their models in an experimental environment.
These promising experimental results helped move the field forward
towards practical applications. In the past five years, use cases have
been developed in healthcare [7, 87, 88, 89], finance [90], and technology
companies [14, 91, 92] to examine different PPDDM methods. Participation
of industry partners accelerates the transformation of PPDDM theoretical
methods to practical applications. The existing PPDDM methods have been
well-developed to solve a wide range of data problems (e.g., classification,
clustering, association rule mining) using various data mining algorithms.
To achieve the goal of PPDDM methods in practical studies, methods that
will preserve privacy require legal, ethical, and social scholars in addition to
scientific and technical experts. Successful implementation of PPDDM needs
a joint effort from researchers with diverse backgrounds.

2.5.1 Inadequate definition and measurement of privacy
There are some challenges hindering PPDDM methods to be further devel-
oped and widely applied in practice. One of the key issues is the lack of the
definition and measurement of (information) privacy. The meaning and op-
erational definition of privacy is commonly ambiguous and subjective in the
selected papers. It is not sufficiently expressed by the papers what privacy
means to them, and what their proposed approaches can preserve. The three
most common definitions of privacy preservation in the selected papers are
1) not revealing sensitive information; 2) not revealing private information;
3) not revealing raw data. However, it is unclear if sensitive information or
private information or raw data is equal to personal information privacy. To
understand personal information privacy from a legal and ethical perspec-
tive, it is the right of an individual or group to seclude themselves, or in-
formation about themselves, and thereby express themselves selectively [93,
94, 95]. Similarly, privacy is seen as the claim of individuals, groups, or in-
stitutions to determine for themselves when, how, and to what extent infor-
mation about them is communicated to others [96]. In relation to controlling
and protecting privacy, two definitions from legal literature state Privacy, as
a whole or in part, represents the control of transactions between person(s)
and other(s), the ultimate aim of which is to enhance autonomy and/or to
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minimize vulnerability [97] and Privacy is to protect personal data and infor-
mation related to a communication entity to be collected from other entities
that are not authorized [98].

According to privacy definitions above, any information about a person can
be considered as privacy regardless of its sensitivity, originality, and trans-
formation. It is the data subject that determines what data is private. For
instance, a data subject might consider their state of mental health more pri-
vate than their date of birth. However, existing PPDDM methods have not
yet addressed different privacy requirements from each data subject. All data
elements have equal treatment for all data subjects. This might cause insuf-
ficient privacy preservation for some data elements and data subjects, while
over-protection for the others. To personalize the privacy preservation, Xiao
and Tao [99] proposed a new generalization framework using personalized
anonymity that data subjects can specify the degree of privacy protection for
her/his data elements. In the study, Xiao and Tao [99] assume: 1) data sub-
jects can easily set/change their privacy requirements with data parties, 2)
data subjects are knowledgeable about the benefits and consequences of set-
ting different degrees of privacy. This method is only applicable when the
data is centralized. In the partitioned data scenario, there is no platform yet
facilitating data subjects to customize privacy requirements for each data el-
ement across multiple parties. Second, privacy requirements can be satisfied
when using one single data source. However, analyzing an amount of par-
titioned data from multiple sources increases risk of privacy violation. As
indicated by the 2020 European Commission White Paper on Artificial Intel-
ligence [100], data about persons can be re-identified through the analysis of
large amounts of other non-private data.

2.5.2 Ambiguity between privacy and security
Another ambiguity lies in the difference between (information) privacy and
(information) security. Different from privacy, security has an explicit defini-
tion and measurement from the cryptography domain, separating the prob-
lem into semantic security and technical security [59]. Semantic security is
a computational-complexity analogue of Shannon’s definition of perfect pri-
vacy (which requires that the ciphertext yield no information regarding the
plaintext). Technical security is the infeasibility of distinguishing between en-
cryptions of a given pair of messages. Generally speaking, security focuses on
maximally protecting information/data from malicious attacks and stealing
data. Satisfying security requirements is not always sufficient for addressing
privacy issues [101]. However, in the majority of the reviewed papers, the
difference between security and privacy is not clearly stated. For example,
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some studies defined the data privacy but evaluated the methods by con-
ducting security analysis [102, 103, 104]. Certain approaches guarantee that
the data used for the analyses remain unknown to other parties through se-
cure computation. However, this does not mean that the resulting output
from the analyses is equally privacy-preserving [13, 101, 105]. The output can
reveal information about the person so that the privacy is still not preserved
according to the privacy definition we discussed above. For instance, the out-
come of the analysis might portray a harmful profile for individuals sharing
certain characteristics. Some essential problems are not taken into consider-
ation, such as how much data or information will be revealed by the output
although the output is computed securely [89], whether the models and al-
gorithms are harmless to the data party or individuals, does the purpose of
formula or function satisfy the legal and ethical concerns [106, 107]. A typical
example is building a decision tree on vertically partitioned data in a privacy-
preserving way. The decision tree model can be securely and correctly built
up. However, to some extent, the decision tree, as an output, leaks informa-
tion about the input data [108]. Decision tree algorithm splits nodes based
on attributes or features, while the splitting decision is dictated by the data.
When the final decision tree is completed, the leaf nodes in the tree might
reveal some information about the input data such as class counts. Therefore,
releasing the final decision tree to all participating parties could potentially
breach privacy.

Providing an applicable privacy description is significant to any PPDDM
studies. What data or information should be preserved from mining can be
influenced by different legal restrictions, ethical concerns, organizational reg-
ulations, personal preference, and application domains. Instead of general-
izing the solution of a specific scheme to all situations, it is more reasonable
to make a precise statement on the specific scenario to address. Therefore,
the authors could provide a clear description to readers about what privacy
means to them, and in which situation the proposed approach is privacy pre-
serving by answering the following questions:

1. What is the operational definition of privacy-preservation for the work?

2. Which data are deemed sensitive or require protection, and why?

3. What computational operation is intended to preserve privacy, and where does
it fail?

4. What is the role or responsibility of each actor (e.g., data collector, data holder,
data publisher, data analyst) in the scenario?
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2.5.3 Inadequate experiments and practical use cases
Our review result shows half of the reviewed papers did not provide any ex-
periments to evaluate their methods, and as such there were no reports of
accuracy, efficiency, and scalability in these papers. This is probably one of
the gaps between the theoretical research and practical use cases in this do-
main. Solutions based on theory might not solve real world problems. In
our review, only a few papers applied real-world use cases to evaluate their
methods. It reflects a fact in this domain that many solutions have been pro-
posed by researchers, but only a few of them were implemented in practice.
Without experimenting on real data, the proposed approaches might neglect
essential problems such as sparse or biased datasets [54, 109], or record link-
age problems in vertically partitioned data [110, 111, 112]. Future research in
PPDDM should consider conducting experiments using real-world datasets
and provide adequate information about the experiments. Meanwhile, we
observed most real-life use cases to examine existing PPDDM approaches
from the healthcare domain [87, 106, 89]. We suggest researchers apply the
PPDDM methods to practical cases also in other research domains such as
social sciences. In addition to developing new theories, implementing and
improving existing approaches in practice can also make a meaningful con-
tribution to the PPDDM domain.

Nevertheless, these findings were observed in the light of limitations in our
search strategy, which are elaborated in section 2.5.6. This review did not
specifically search for follow-up studies of reviewed papers. A possible ef-
fect is that papers which lack experiments might present their experiments
in the follow-up studies, and might introduce selection bias towards the low
number of practical experiments. However, we would argue that our search
strategy would have found these papers if proper terminology was used.

2.5.4 Challenge of linking data in vertically partitioned data
scenario

The accurate linking of entities across distributed datasets is of crucial impor-
tance in vertically partitioned data mining. Data parties must link their data
and/or order them in an identical manner prior to data analysis. However,
most papers assume this correspondence between data entities (records) exist
by default. Matching data entities from multiple datasets can be error-prone
particularly where the use of direct identifiers - even encrypted - are pre-
vented by law, as is the case in the use of the national Citizen Service Number
(Burgerservicenummer’) in the Netherlands [113]. Sharing such identifiers
compromises privacy as the sole information that a data subject is known
to another data entity might be sensitive. Furthermore, one often assumes
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that records can be linked by doing exact matching on this unique identifier.
However, exact matching can be very difficult due to the unstable and incor-
rect identifiers. Winkler and Schnell showed that 25% true matches would
have been missed by exact matching in a census operation [114, 115]. In an-
other case, two data parties do not share the unique identifiers but have some
features in common. As an alternative solution, two parties can match the
data entities based on their common features. The matching accuracy will be
affected by the correctness, completeness, and updating promptness of these
common features from both data parties. In addition, privacy needs to be
preserved in the matching procedure. Some efficient and privacy-compliant
algorithms for the field of privacy-preserving entity matching have been de-
veloped [116, 117, 118, 119] in the past 10 years.

2.5.5 A recommendation list of key parameters for PPDDM
studies

It is challenging to compare similar PPDDM methods where there is a lack of
key parameters presented. For instance, approaches which are designed for
semi-honest parties might not be comparable with the approaches aiming to
handle malicious behavior. The privacy-preserving methods for semi-honest
parties will fail if involved parties show malicious behavior such as manip-
ulating the input or output or completely aborting the protocol. Thus, the
allowed adversarial behavior of participating parties is essential to be explic-
itly stated in the PPDDM papers. To consider all key parameters in PPDDM
techniques, we provide a list of recommendations for the reporting of studies
proposing new PPDDM methods or improving existing PPDDM methods as
Table 2.2 shows. The recommendations detail the key parameters that should
be described in each section of the paper of PPDDM. The factors in Table 2.2
refer to the 10 factors in the evaluation criteria which were discussed in the
Methodology Section.

Section Factor Recommendations
Title and abstract
Title and key-
words

2,7 Identify the study as developing new or improving existing
PPDDM algorithms to solve which data problem by using
which type of partitioned data in a privacy-preserving man-
ner

Abstract 1,2,4,6,
7

Summarize the problems, objectives covering assumed ad-
versarial behavior of data parties, data partitioning, brief
description about privacy-preserving method, data mining
algorithms, and applied dataset in the experiments.

Introduction
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Table 2.2 continued from previous page
Section Factor Recommendations
Problem state-
ment and back-
ground

2,3,5,6 Describe how data partitioned in which domain are consid-
ered by this study, what privacy issues are involved in that
domain, which data mining algorithm is studied to solve
what problems. Additionally, the number of participating
parties and if all parties or only some parties have the target
class should be also covered by this section.

Objectives and
study design

1,3,4,7 Specify the objectives and study design include what level
of privacy (or information leakage) is preserved against
what adversarial behavior, applied privacy-preserving
methods, evaluation criteria (for accuracy, efficiency, and
privacy level), applied datasets in the experiments.

Methods
Method design 4,5,6 Clearly explain which privacy-preserving methods are ap-

plied including the specific protocols/structures, proofs of
preserving information leakage. Then, describe how cer-
tain data mining algorithms are adapted to combine with
privacy-preserving methods, what information is commu-
nicated among parties, and complexity in different scenar-
ios such as using categorical or numerical data, or involv-
ing different numbers of data parties. Lastly, make the code
publicly available so that other researchers can reproduce
the work.

Data 7 Describe data sources (and where and how other re-
searchers can request the same dataset), the type and size
of the datasets, basic description about data, what the tar-
get features/attributes are, missing values, and other basic
information about the datasets.

Data analysis de-
sign

5,6 If real-life datasets are applied in the study, this subsection
should describe the pre-processing of features/attributes
(such as normalization, re-sampling), data analysis algo-
rithms, parameter setting, and so on with reference to other
comparable studies.

Experiment de-
sign

7 Describe how the datasets are partitioned (both feature-
wise and instances-wise), how data parties communicate/-
transfer files, what validation is used, and what ma-
chine(such as CPU, memory) and software(versions) are
used to do the experiments. In addition, experiments
should be set up to compare with other existing PPDDM
methods, or compare with privacy-preserving centralised
data mining methods, or compare with distributed data
mining methods without preserving privacy.

Evaluation design 8,9,10 Describe the evaluations of accuracy, efficiency (computa-
tional complexity, time cost on computation and communi-
cation among parties), privacy/security (such as informa-
tion disclosure measurement)

Result
Discovery from
datasets

7 If real-life datasets are applied in the study, this subsection
should describe what new knowledge was obtained from
their analysis
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Table 2.2 continued from previous page
Section Factor Recommendations
Model perfor-
mance

8 Present the performance measures such as accuracy scores
of the proposed models in comparison with other existing
PPDDM methods, or privacy-preserving centralised data
mining methods, or distributed data mining methods with-
out preserving privacy. Performance will be presented
based on the evaluation criteria which was described in the
methods section.

Privacy and/or
security analysis

9 Provide sufficient privacy/security analysis based on the
assumed adversarial behavior (semi-honest or malicious).
Describe what information is exchanged among parties,
what can be learnt from the exchanged information, if the
models as a final outcome can cause information leakage,
what the potential risks exist during the training process or
in the final model.

Scalability analy-
sis

10 Present the computation complexity and time consumption
of the methods and describe what the volume (number of
instances) and variety (number of features/attributes) of
data can be handled by the proposed methods

Discussion
Limitations / Discuss any limitations of proposed methods such as spe-

cial cases where the methods are not applicable or certain
assumptions which are not common in practice.

Interpretation / If real-life datasets are applied in the study, this subsection
should discuss the findings with reference to any other val-
idation data from other studies. Then, interpret the model
performance on accuracy, efficiency, feasibility in practice,
strengths and weaknesses with reference to other existing
PPDDM methods.

Implementa -tion / Discuss what other resources, paperwork, or supports are
needed to implement the proposed methods, what potential
challenges or risks will appear if apply the methods on real-
life data.

Table 2.2: A list of recommendations for reporting PPDDM studies

2.5.6 Potential limitations
The findings of this review have to be seen in light of some potential lim-
itations. First, the 231 reviewed studies were searched from only 6 digital
bibliographic databases (IEEE Xplore Digital Library, ACM Digital Library,
Science Direct, ISI Web of Science, SpringerLink, and PubMed) and must be
peer-reviewed publications. Some relevant studies may be missed in this re-
view because they were not findable in these 6 bibliographic databases during
searching. Studies that have not been peer-reviewed such as relevant articles
published on arXiv.org7 were excluded.

7arXiv - a free distribution service and an open-access archive: https://arxiv.org/
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Second, we did not apply an iterative ‘snowballing’ approach to further iden-
tify more relevant studies [120]. ‘Snowballing’ searching includes 1) reference
tracking which identifies relevant studies from the reference lists of the pri-
marily selected papers, 2) citation tracking which identifies relevant articles
that cite primarily selected papers. We decided not to apply ‘snowballing’
approach is because it may introduce a bias in favour of what authors think
is relevant to their narrative [121]. Contrary, omitting the ‘snowballing‘ ap-
proach results in omitting follow-up studies of the reviewed papers. We de-
cided to choose the latter approach, as we deemed our search criteria to be
broad enough to cover follow-up studies. We have found several follow-up
papers, where these papers present an extension of their existing methods to:
1) solve other data partitioning problems [77, 78]; 2) apply to more advanced
data analysis algorithms [122, 123]; 3) to include more complicated user sce-
narios [124, 125]; 4) to conduct more experiments by using real-life datasets
[7, 87, 112, 107].

Moreover, due to the scope of this review (providing a general overview
of existing PPDDM methods and identifying outstanding challenges), more
details of some privacy-preserving methods were not extensively discussed.
For instance, in the category of ‘local learning and global integration’, mul-
tiple different methods can be applied to integrate the local miner (model)
into a global miner (model) such as stacked generalization [126] and meta-
learning[127]. In our belief this field warrants a separate in-depth review.
Additionally, it has been well-recognized that there is an important trade-off
between leakage of information and effectiveness or efficiency of learning in
PPDDM technologies [14, 27, 128, 90]. In practice, it is crucial to balance this
trade-off depending on the specific use cases, the purposes of the data anal-
ysis, and the urgency of the problems. Although we included the privacy
and efficiency factors in our review, we did not further investigate how each
method weights the trade-off between them. For example, we did not mea-
sure how much and in which way information loss was tolerated to increase
efficiency. We believe this specific trade-off issue between privacy (informa-
tion leakage) and learning performance (effectiveness or efficiency) deserves
further investigation.

2.6 Conclusion
Privacy-preserving distributed data mining (PPDDM) techniques consider
the issue of executing data mining algorithms on private, sensitive, and/or
confidential data from multiple data parties while maintaining privacy. This
review presented a comprehensive overview of current PPDDM methods to
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help researchers better understand the development of this domain and assist
practitioners to select the suitable solutions for their practical cases.

In this review, we discovered there is a lack of standard criteria for evaluating
new PPDDM techniques. The previous studies applied a variety of different
evaluation methods, which brings challenges to objectively comparing ex-
isting PPDDM techniques. Therefore, an comprehensive evaluation criteria
was proposed in this review including 10 key factors - adversarial behav-
ior of data parties, data partitioning, experiment datasets, privacy/security
analysis, privacy-preserving methods, data mining problems, analysis algo-
rithms, complexity and cost, performance measures, and scalability to assess
231 recent studies published between 2000 to 2020 (August). We highlighted
the characteristics of the 18 most cited studies and analyzed their influence
on other studies in the field. Furthermore, a variety of definitions of privacy
and distinguishment between information privacy and information security
in the PPDDM field were discussed in this review, followed by some sugges-
tions of making applicable privacy descriptions for new PPDDM methods.
Finally, we also provided a list of recommendations for future research such
as explicitly describing the privacy aspect under consideration, and evaluat-
ing new approaches using real-life data to narrow the gap between theoretical
solutions and practical applications.
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Chapter 3. A Privacy-Preserving Infrastructure for Analyzing Personal
Health Data in a Vertically Partitioned Scenario

Abstract
It is widely anticipated that the use and analysis of health-related big data
will enable further understanding and improvements in human health and
wellbeing. Here, we propose an innovative infrastructure, which supports
secure and privacy-preserving analysis of personal health data from multiple
providers with different governance policies. Our objective is to use this in-
frastructure to explore the relation between Type 2 Diabetes Mellitus status
and healthcare costs. Our approach involves the use of distributed machine
learning to analyze vertically partitioned data from the Maastricht Study, a
prospective population-based cohort study, and data from the official statis-
tics agency of the Netherlands, Statistics Netherlands (Centraal Bureau voor
de Statistiek; CBS). This project seeks an optimal solution accounting for sci-
entific, technical, and ethical/legal challenges. We describe these challenges,
our progress towards addressing them in a practical use case, and a simula-
tion experiment.
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3.1 Introduction
A growing amount of personal health data are being collected by a variety of
entities, such as healthcare providers, insurance companies, and wearable de-
vice manufacturers. Use of personal health data such as health status, current
and prior medications, lifestyle and behavior offers unprecedented oppor-
tunities to augment our understanding of human health and disease. This
contributes to improved diagnostic accuracy and efficiency [1, 2], and facili-
tates the transition to preventive [3, 4] and precision medicine [5, 6, 7]. More-
over, the analysis of health data can help governments pursue effective health
policies while minimizing healthcare costs. Such innovation arises from the
secondary use of health data for research.

However, a major barrier to research lies in the difficulty of accessing and
analyzing health data that are dispersed in both their form (e.g. medical
records, consumer activity, and social media), representation (structured,
semi-structured, and/or unstructured), and stewardship (who is responsible
for data collection and governance?). While many methods to represent and
exchange healthcare data have been developed [8], there has been a lack of
focus on legal-ethical concerns such as data ownership and data stewardship
as well as issues relating to privacy, security, and confidentiality [9]. Such
considerations are particularly crucial when use and analysis of health data
involve multiple legal entities, different data standards, a lack of detailed
provenance, and unclear access authorization procedures.

Another significant challenge lies in the analysis of personal health data from
multiple sources. The simplest case is where data are horizontally parti-
tioned, such that data about different sets of individuals are located in dif-
ferent sites. Analyzing these distributed data is relatively well understood
and reduces to combining a set of models from each site. A more challeng-
ing case is where data are vertically partitioned: different attributes about a
particular individual are distributed over a set of data sources. While in the
case of horizontally partitioned data analytical results are combined after-
wards, this is not possible in the vertically partitioned case since none of the
data providers can execute the complete analysis independently of the other
providers. This is particularly challenging either when there is a legal imped-
iment to link records across data providers with a unique identifier or when
this unique identifier is unavailable. Addressing this challenge effectively re-
quires a great level of technical sophistication to simultaneously address legal
and/or privacy constraints.

Instead of centralizing the data for the analysis, one could use distributed
learning methods, which operate over vertically partitioned data. In such a
scenario, data-processing algorithms are sent to each site, and can only return
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the results of an analysis rather than any of the original data. One such infras-
tructure is the Personal Health Train (PHT) [10, 11], which sends applications
(the trains) containing algorithms to the data sources (the stations). The sta-
tion can inspect whether the train is allowed to execute the application on (a
subset of) the available data. The PHT empowers data subjects with more
control (who can access the data?) and transparency (what are the trains re-
questing?). Hence, the PHT facilitates authorized algorithmic processing in
a secure manner at multiple data sites without requiring a transfer of (origi-
nal) data to a centralized location. Moreover, the PHT implements privacy-
by-design in the following ways: 1) it can restrict which data elements are
available to an application, 2) it can restrict the results of the analysis to only
processed data, rather than original data, and 3) no data party can see the
data of other parties in the network.

Here, we describe an implementation of the PHT that uses a Trusted Secure
Environment (TSE) to analyze vertically partitioned data that are prepared in
line with the FAIR principles (Findable, Accessible, Interoperable, Reusable)
[12]. By describing data using the FAIR principles, the infrastructure becomes
ambivalent to certain syntactic data structures (e.g. OHDSI, CDISC-ODM or
HL7 v2/v3/FHIR), as the applications, executed at the data source, should be
able to interpret different types of data structures. To test the feasibility of this
infrastructure, we combine data from two independent data providers to in-
vestigate how Type 2 Diabetes Mellitus (T2DM) status affects healthcare cost.
The first dataset comes from the Maastricht Study1, an observational prospec-
tive population- based cohort study focusing on the etiology of T2DM, and
the second comes from the official statistics office in the Netherlands: Statis-
tics Netherlands2 (Centraal Bureau voor de Statistiek; CBS). We present pre-
liminary results involving simulated data and discuss the challenges and fea-
sibility of such an infrastructure to be scalable and secure.

3.2 Methods
In this section, we describe the development of our proposed infrastructure
from a scientific, technical, and legal perspective to support the workflow.
Following is the description of our simulation experiment to test the usability
of our infrastructure.

1The Maastricht Study is an observational prospective population-based cohort study fo-
cusing on the etiology, pathophysiology, complications and comorbidities of T2DM.
https://www.demaastrichtstudie.nl/

2Statistics Netherlands is a Dutch governmental institution that gathers statistical information
about the Netherlands: https://www.cbs.nl/en-gb
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3.2.1 Development Workflow
The PHT architecture has been previously used to analyze horizontally par-
titioned datasets [13, 14, 15, 16]. Here, we extend this work to include ver-
tically partitioned data. While several studies discuss exchanging and ana-
lyzing vertically partitioned data [17, 18], these are largely theoretical and
overlook practical challenges, e.g. legal and ethical considerations, incom-
patible data management standards, scalability of the infrastructure, lack of
financial support to sustain such efforts, and the technical requirements of
learning from vertically partitioned data. To tackle these challenges, our team
has established three interlocking work packages that target: i) the scientific
questions in the medical domain; ii) the ethical, legal, and societal issues; and
iii) the technical aspect. These packages are highly intertwined to ensure the
development of practical solutions.

3.2.2 Scientific Perspective
To develop infrastructure that is useful to scientific researchers, we have iden-
tified key research questions that the infrastructure should help answer. An-
swering these research questions should require the combination of sensitive
(non-public) data from multiple providers. To combine data from multiple
providers, a substantive set of individuals should be shared by the providers
and at least some attributes of these individuals are present in both datasets
to enable linking of the data records (and not necessarily by some specific
individual identifier).

3.2.3 ELSI Perspective
The Ethical, Legal, and Societal Issues (ELSI) team deals with two types of
challenges: i) privacy concerns that arise from the special nature of personal
health data3; and ii) the legal challenges that arise from working with mul-
tiple data providers with each a distinct governance framework. Combin-
ing data from multiple parties is a relatively new phenomenon, and often
not foreseen when establishing the legal framework when the data are col-
lected. Therefore, one of the major challenges has been to facilitate this study
whilst adhering to the original legal framework and defined purpose. In do-
ing so, the ELSI team has examined the reach of the original legal basis (i.e.
informed consent) and purpose for which each data provider obtained the
personal data, and is further analyzing the legal basis and purpose for which
secondary processing can occur. Options that are being considered include
but are not limited to the route of compatible processing and the route of
scientific research in the public interest. Additionally, there are a number of
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limitations from the data providers themselves regarding accessing, sharing,
and linking data. In addition, for this challenge, a legal framework has to be
formulated in order to establish collaborations between the data providers,
among themselves and with the research team. Constructing this legal frame-
work and finding the proper legal basis for the researchers team is a valuable
contribution from the ELSI team.

3.2.4 Technical Perspective
Following the PHT architecture3, we use the concepts of (FAIR data) stations4,
rails (infrastructure) and (applications) trains. The minimal requirement of a
FAIR data station is to enable execution of applications, where data providers
decide whether to execute the application. These FAIR data stations are based
on Semantic Web technologies such as the Resource Description Framework
(RDF) [19], to convert the source data5, and make the converted data FAIR.

Application (train) developers (i.e., researchers) can create the application
trains using Docker containers [20], which are lightweight virtual machines.
The Docker container carries all required software packages to execute the ap-
plication on board. These applications can for instance query data available
in the data station, perform data cleaning/formatting, and execute machine
learning or statistical analysis [15]. Only the results of these (analytical) ap-
plications are sent back to the application developers.

To implement the proposed infrastructure, we created three stations. Two
FAIR data stations are at the Maastricht Study and at CBS. A third station
was configured as a Trusted Secure Environment (TSE), containing no data
by itself, however, acting as a trusted and independent entity. Additionally,
we created two application trains. The first application train extracts the data
from two data stations, pseudonymizes the personal identifiers, encrypts the
dataset, and sends the data to the TSE station. The second application train
decrypts the data and analyzes the data at the TSE. For every execution, both
application trains are configured for proper encryption and security mea-
sures.

3.3 Experiment design
Prior to feeding our infrastructure with real data, we conducted a simulation
experiment with two scenarios where researchers combine data from two in-

3PHT architecture: https://bitbucket.org/jvsoest/pytaskmanager.git
4FAIR stations: http://github.com/maastroclinic/DataFAIRifier
5Convert CSV file to RDF file: https://github.com/sunchang0124/FAIRHealth/
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dependent providers using a TSE station. We monitor time to obtain the
analytical results for each scenario. Scenario 1 consists of two providers, A
and B, each having the same (small) number of individuals; Scenario 2 con-
sists of providers A and B, but provider B has a much larger set of individ-
uals, including all Provider As individuals. For these scenarios, we use data
from a publicly available dataset which contains attributes that could be in-
terpreted as sex, body mass index (BMI), number of children, smoking status,
region, and health insurance reimbursement of participants [21]. Addition-
ally, we generated artificial personal identifiers including date of birth, zip
code, house number, and sex for linking purpose [22]. In practice, combining
multiple datasets might be prone to record-linking errors. We will discuss
this in more detail in the Discussion section. Please find this synthetic dataset
in Figshare6. This dataset is vertically split over the two providers: both have
artificial personal identifiers (date of birth, zip code, house number, and sex).
Only Provider A has BMI, number of children, and smoking status, while
only Provider B has living region and health insurance reimbursement. In
scenario 1, both providers have 1338 patients. In scenario 2, Provider A still
has 1338 patients while Provider B hosts 64,400 patients. Since, Provider A in
the second scenario only hosts a small subset of Provider B, a single record of
Provider A might match with several records from Provider B. Even though
this scenario is often encountered in practice, few solutions are available to
address this linking challenge for vertically partitioned data [23].

For our experiment, we developed application trains using Docker 18.03.1.
Pseudonymization, encryption, verification, and record linkage were imple-
mented in Python 2.7. The infrastructure was tested with a 2.5GHz PC with
16GB RAM and 500 GB hard disk.

3.4 Results
In this section, we detail the contributions of each of the three work packages.
Next, we discuss the outcome of the experiment. Figure 3.1and Figure 3.2
provide an illustration of the infrastructure. In Figure 3.1, an overview of
the operational framework for two providers, A and B, and a trusted secure
environment, TSE, is presented. In Figure 3.2, we present the technical and
legal requirements of the FAIR data stations. Researchers request permis-
sion to access and process data from the data provider. Once permission is
granted, application trains to pseudonymize and encrypt the data are sent
and executed in the data stations. Next, the encrypted data are sent to the
TSE, followed by the data analysis application (from the researchers).

6Find our synthetic datasets: https://doi.org/10.6084/m9.figshare.7379810.v2.
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In the FAIR data stations (Figure 3.2), personal identifiers are pseudonymized
by one-way hashing and salting techniques. One-way hashing turns any for-
mat of data into a fixed-length ”fingerprint” that cannot be reversed. Salt,
as a random string, is appended to data before hashing, to eliminate the
risk of malicious decryption. We used Secure Hash Algorithm 2 (SHA- 512)
as the one-way hashing function and random salts are shared by two data
providers to make personal identifiers pseudonymized on both sites. This
results in a unique code per record, allowing linking the same records from
all data providers. Every time data providers grant researchers permission
to process/analyze the data, the personal identifiers get pseudonymized us-
ing different salts. The salt needs to be created and agreed upon by all data
providers. Additionally, to safeguard secure transfer, processed data are en-
crypted, prior to sending them to TSE. The same as with the salt, encryption
keys are re- generated every time.

Figure 3.1: Conceptual overview of the proposed infrastructure. Data access is regulated by
the data provider hosting the stations. If access is granted, the data providers encrypt the data

and send these to the TSE. The TSE executes the researchers application and allows
aggregated results to be returned to the researcher.

The procedure then continues as follows: when the encrypted data are sent
to the TSE, a notification is generated by the data stations to confirm the suc-
cessful execution and departure of the train. After all encrypted data arrive at
the TSE station, the researchers trigger analysis at the TSE with a set of keys
and an application that includes code for the analysis. There is one private
key per data station to decrypt the dataset, and one verification key to test the
dataset integrity. The data station can only encrypt using the public key but
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Figure 3.2: Overview of data stations and application trains. Within each station, data are
prepared, i.e., legal conditions are checked, FAIR principles implemented, personal identifiers
pseudonymized, and encrypted. The application train enters the data station with algorithms

and leaves with results or processed data.

cannot decrypt. The TSE station maintains the private key to decrypt for this
specific data provider. After getting verified and decrypted data from both
providers, the data can be linked and merged by pseudonymized personal
identifiers. As the salted hashes performed at the data station are unknown
to the TSE, it is not able to reverse or decrypt. sensitive data such as personal
identifiers. Thus, in addition to pseudonymization and encryption, the pri-
vacy of information is further protected as no data provider has direct access
to the TSE. After executing the analytical algorithms on the merged dataset,
the TSE checks whether the results reveal any personal identifiable informa-
tion. Only the validated results such as figures and/or tables that do not
contain any personal identifiable information are returned to the researchers.
Finally, all (received and created) data in the TSE are destroyed.

3.5 Simulation experiments
We used our proposed infrastructure to analyze synthetic data (discussed in
the Methods section) that was vertically partitioned to form two datasets,
each with a different data provider. Figure 3.3 shows one such result: a plot
of BMI and health insurance reimbursement over one calendar year. While
simple, the simulation experiment provides evidence for the feasibility of the
infrastructure to execute an analysis, in this case, retrieval of a relation be-
tween two attributes in separate datasets in a secure and privacy-preserving
manner.

We conducted an experiment with two scenarios. In the first scenario, where

67



Chapter 3. A Privacy-Preserving Infrastructure for Analyzing Personal
Health Data in a Vertically Partitioned Scenario

Figure 3.3: Plot of body mass index (BMI) versus health insurance reimbursement in the past
year (dollars) from the analysis of a synthetic and vertically partitioned dataset using the

proposed infrastructure.

both providers host 1338 individuals, pseudonymization took 0.4-0.5 seconds
and encryption took 0.1-0.2 seconds for each data station. At the TSE, veri-
fication and decryption spent merely 0.1-0.2 seconds, while record linkage
took around 7.2 seconds. For the second scenario, where provider A hosts
1338 individuals and Provider B 64,400 individuals, pseudonymization for
Provider B took 7.3 seconds and 2.5 seconds to encrypt. The total time cost
at the TSE increased to about 15 seconds. From our experiment, we found
that pseudonymization (at data stations) and record linkage (at the TSE) con-
sumed approximately 80% of the running time. Future work will focus on
operational performance measures, and among others, the size of provider
datasets and number of attributes considered in linking.

3.6 Discussion
We have described and demonstrated a distributed learning infrastructure
using artificial and vertically partitioned data involving two providers and a
trusted secure environment. This is a preliminary, but promising result.

Our long-term goal is to deploy the infrastructure to analyze actual data from
two independent organizations - Statistics Netherlands (CBS) and the Maas-
tricht Study. Thus far, we have requested data for 3451 consenting partic-
ipants from the Maastricht Study, which is characterized by extensive phe-
notyping and provides information on the etiology, pathophysiology, com-
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plications, and comorbidities of T2DM. All participants are aged between
40 and 75 years and live in the southern part of The Netherlands. We re-
quested those attributes which were complete and consented. Attributes in-
clude socio-demographic factors, lifestyle factors, the status of T2DM, physi-
cal function, mental functions, BMI, and cardiovascular disease history. From
CBS, we requested regional population data of health insurance reimburse-
ment from 2010-2016. As of November 2018, all application trains have been
developed. We are in the stage of approving and building data stations for
the Maastricht Study and CBS. A joint controllership agreement between the
two organizations is established to enable the TSE. We are preparing analytic
algorithms that will 1) answer scientific questions regarding the associations
between T2DM status and healthcare costs, and 2) to evaluate the perfor-
mance and security of our infrastructure.

Applying the infrastructure to real-world situations will present several chal-
lenges. Although we have only explored a two-data- provider scenario, we
anticipate that it can be extended to more than two providers. While the per-
formance of this system will depend on the size of the data and the algorithms
used for encryption, merging, and analysis, we believe that the biggest bot-
tleneck is in creating consortium agreements and deploying the infrastruc-
ture in individual facilities. As such, there is a need to further develop a
PHT deployment kit that enables stakeholders to consider all the issues and
options and make informed decisions in the most efficient manner. A sec-
ond challenge in our implementation lies in the possibility of errors caused
by linking vertically partitioned datasets. The accuracy of matching across
these will decrease owing to missing data, typographical errors, differences in
pseudonymization procedures, and different formats of identifying informa-
tion. In addition, to match a fraction of records from multiple large datasets,
the data providers could limit the size of their data by sending only a selection
to TSE. This selection can be discovered and defined by sending exploratory
or individual selection algorithms first. For instance, in our case, instead of
sending the information of the entire Dutch population to the TSE, only a sub-
set of the Dutch population which meets the criteria of the Maastricht Study
sample is sent to the TSE. However, note that this selection might also leak in-
formation about the individuals in the data of (one or more) data providers.
We intend to explore the impact of such aspects in future studies. A third
challenge is how to manage and transport the keys securely among differ-
ent parties. The TSE requires decryption and verification keys to decrypt the
data and run the analysis algorithms. This approach must be agreed on by all
parties from both technical and ethical- legal perspectives.
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3.7 Conclusions
To analyze vertically partitioned data, we extended a Personal Health Train
(PHT) infrastructure to send data analysis algorithms to multiple data sta-
tions and return only the results instead of the original data to the researchers.
This infrastructure was developed in a coordinated manner across multiple
scientific, technical, ethical, legal, and societal aspects involving several units
and organizations. This coordination across interests is essential to explore
viable solutions for data sharing and reuse, as envisioned by the proponents
of the FAIR principles. In particular, the idea of bringing the algorithm to
the data, rather than obtaining consent to receive a copy of the data, offers
an entirely new paradigm that has not been considered by most organiza-
tions. Having a new paradigm will require stakeholders to take the time and
effort to thoroughly evaluate this in terms of their legal and technical require-
ments. However, as our experiment shows, it offers a more scalable and se-
cure solution to analyze vertically partitioned data in a secure and privacy-
preserving manner. Additional operational and security enhancements are
still needed before the infrastructure is suited to deal with real (sensitive)
data. Future work will explore the quality of scientific discovery (accuracy of
outcome), the security, scalability, sustainability, and performance of compu-
tation. While no solution will be perfect for all situations, we believe that this
adaptation of the PHT model will find utility in situations involving sensitive
data with a multitude of stakeholders.
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Chapter 4. Studying the Association of Diabetes and Healthcare Cost on
Distributed Data from The Maastricht Study and Statistics Netherlands
using a Privacy-Preserving Federated Learning infrastructure

Abstract
Mining personal data collected by multiple organizations remains
challenging in the presence of technical barriers, privacy concerns, and legal
and/or organizational restrictions. While a number of privacy-preserving
and data mining frameworks have recently emerged, much remains to
show their practical utility. In this study, we implement and utilize a secure
infrastructure using data from the Statistics Netherlands and the Maastricht
Study to learn the association between Type 2 Diabetes Mellitus (T2DM) and
individuals’ healthcare expenses considering the impact of lifestyle, physical
activities, and T2D complications. Through experiments using real-world
distributed personal data, we present the feasibility and effectiveness of the
secure infrastructure for the practical use cases of linking and analyzing
vertically partitioned data across multiple organizations. We discovered that
individuals diagnosed with T2DM had significantly higher expenses than
those with prediabetes, while participants with prediabetes spent more than
those without T2DM in all the included healthcare categories to different
degrees. We further discuss a joint effort from technical, ethical-legal, and
domain-specific experts that is highly valued for applying such a secure
infrastructure to real-life use cases to protect data privacy.
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4.1 Introduction
The amount of personal data generated from individuals is dramatically
growing. This massive data can be used by the research community to study
unresolved research questions and gain new scientific insights. However,
one of the major barriers that researchers are often faced with is the difficulty
of accessing and jointly analyzing the personal data that are distributed at
multiple data organizations such as healthcare providers, banks, retails,
insurance companies, and governmental organizations. Sharing and
analyzing distributed personal data across multiple organizations remains
challenging from technical, ethical-legal, administrative, and political aspects
owing to such as inconsistent data standards, a lack of data provenance,
and insufficient FAIR (Findable, Accessible, Interoperable, Reusable) data
management [1]. This hinders discovering more potential knowledge from
distributed personal health data, as well as the secondary use of health data
for intra- and inter-disciplinary research.

To tackle this challenge, we have proposed a prototype secure infrastructure
which supports analysis of personal health data that are vertically partitioned
data at multiple organizations with different governance policies with pre-
serving individual privacy [2]. Vertically partitioned data represents mul-
tiple organizations hosting different features from the same group of data
subjects. Following the Personal Health Train (PHT) initiative, our approach
sends data analysis algorithms to multiple data organizations and returns
only the results instead of the original data to the researchers [2, 3, 4]. From
our previous systematic literature study on privacy-preserving distributed
data mining [5], several remaining challenges have been recognized in the
existing methods such as the lack of data linkage process in the vertically
partitioned data and the shortage of the practical implementation of the the-
oretical methods. In vertically partitioned data, participating organizations
must accurately link their data or sort them in an identical order prior to data
analysis. A majority of studies assume this correspondence between data
records exists by default which is often not the case in reality. Second, a large
number of privacy-preserving data analysis studies did not implement their
theoretical solutions to practical applications. Without practical implementa-
tion, the approaches might neglect essential problems such as the impact of
the ethical-legal or organizational regulations on the technical development
and data quality issues (e.g., the sparse or biased datasets) [6, 7, 8].

Unlike the most existing studies, our proposed infrastructure covers accurate
data linkage in vertically partitioned data using pseudomized identifiers and
analyzes encrypted data in a trusted secure environment which is indepen-
dent from the parties who provide the data and researchers who conduct the
data analysis. We implemented and evaluated the proposed infrastructure
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in a practical use case to study the association between the status of Type
2 Diabetes Mellitus (T2DM) (normal glucose metabolism, pre-diabetes, and
T2DM) and individuals’ healthcare expenses using vertically partitioned data
from The Maastricht Study and Statistics Netherlands while meeting their le-
gal and technical requirements. The Maastricht Study is an observational
prospective population-based cohort study focusing on the etiology, patho-
physiology, complications and comorbidities of T2DM and is characterized
by an extensive phenotyping approach [9]. Statistics Netherlands (CBS: Cen-
traal Bureau voor de Statistiek) is the Dutch national statistical agency that
provides reliable statistical information and data about the Netherlands.

The motivation of this use case study is T2DM and diabetes complications
creating a significant economic burden on patients and their families in terms
of higher healthcare payments and loss of family income [10]. This eco-
nomic burden is estimated to rise further due to changes in demographics
and lifestyles [11]. Modern lifestyles such as increasing intake of processed
food, longer sedentary time, and physical inactivity are the most influential
factors of developing T2DM and its complications [12, 13]. Indirectly, lifestyle
might have a considerable impact on healthcare costs of people with T2DM.
Unfortunately, the health-related data, lifestyle data, and health care expense
data from individuals are held by different organizations (e.g., healthcare
providers, insurance companies, and statistics offices) and these data are re-
stricted to access and be shared across organizations. Hence, only limited
evidence has been obtained on the economic impact of T2DM status in differ-
ent categories of healthcare providers observed from an individual level. The
key drivers of the economic impact across different healthcare categories is
poorly studied. Therefore, our infrastructure can be applied to jointly analyze
the distributed personal data in this case and gain a better understanding of
the economic impact of T2DM in order to help inform effective health policies
while minimizing healthcare costs or optimizing cost allocation.

In this study, the development and practical implementation of proposed in-
frastructure are based on a collaboration between technical and ethical-legal
experts from all participating parties. We summarize the key contributions:

1. Proving the feasibility of the proposed privacy-preserving infrastruc-
ture using distributed personal health data from two independent or-
ganizations as a practical use case,

2. Accurately linking real-life data of unequally sized datasets - 3283
records from the Maastricht Study with data of over 1 million records
from the Statistics Netherlands using a pseudonymization method,

3. Jointly analyzing linked vertically partitioned data using machine
learning models combined with encryption methods to examine the
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association between T2DM status and annual healthcare costs in
different healthcare provider categories.

This paper is structured as follows. Section 4.2 will describe the personal data
from two data sources and our analysis methods. The settings of experiments
and the secure infrastructure will be presented in Section 4.3 followed by the
results and findings in Section 4.4. Section 4.5 will describe the strengths and
limitations of the study. Lastly, we conclude the work in Section 4.6.

4.2 Methods
The proposed infrastructure designed for analyzing data from multiple
sources without revealing any original data was preliminarily proposed in
the previous study [2, 4]. It is an extension of Personal Health Train (PHT)
architecture which facilitates researchers to send data-processing algorithms
to each data source instead of centralizing the data required for the analysis.
The PHT architecture has been implemented and evaluated by several
practical use cases on horizontally partitioned data1 [14, 15, 16]. In the
case of horizontally partitioned data, a set of models, individually trained
on each data source, are combined over multiple iterations, resulting in a
global model. However, this is not possible for vertically partitioned data
since not all of the input features are available in all data sources. Hence,
data sources cannot execute the complete analysis independently of the
other sources. Additional challenges need to be considered when there is a
legal impediment to link data on each individual level across sources with
a unique identifier or when this unique identifier is unavailable [17]. This
study aims to tackle the challenges in vertically partitioned data.

To tackle the challenges, we proposed and practically implemented a secure
infrastructure to analyze vertically partitioned data. Figure 4.1 illustrates the
workflow of the proposed infrastructure. The infrastructure consists of appli-
cation trains which contain analysis models (trains) designed by researchers,
data stations where data organizations can execute the models, and a legal-
ethical framework (railway tracks) supporting such data analyses. In the use
case, we created data stations at the Maastricht Study and CBS, respectively,
and a third station which was configured as a Trusted Secure Environment
(TSE) supported by a legal agreement (joint controller agreement) between
the two data organizations. The TSE station does not contain data by itself,
however, acting as a trusted and independent entity. No data organization or

1Horizontally partitioned data scenarios are when multiple organizations host the same fea-
tures from different individuals, while vertically partitioned data scenarios are when these
organizations host different features from the same group of individuals.
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Figure 4.1: A simplified working process of using the privacy-preserving infrastructure. As
the Statistics Netherlands and The Maastricht Study conducted the same operations, the data

organizations in the figure present both of them.

researcher has direct access to the TSE. To be able to have secure communica-
tions between data stations and verify authentications of each other, all partic-
ipating organizations are required to first generate encryption key pairs and
securely exchange generated keys with the TSE station using DiffieHellman
key exchange method and Secure File Transfer Protocol over public channels.
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Other encryption schemes and details which are applied in the infrastructure
are elaborated in the following sections.

The application trains are built as Docker containers, which carry all
required software packages to execute the application on board. These
applications can query data, perform data cleaning/formatting, and execute
machine learning or statistical analysis. To run the application train, each
source deploys a data station which contains the data required for the
analysis. The data station only returns the results of the analysis rather than
any of the original data. In the use case, we created two application trains.
The first application train is executed at the data station of each organization
respectively. The application extracts the data from two data stations,
pseudonymises the personal identifiable features for linking purpose,
encrypts the data files, sign on the encrypted data files and analysis model
file, and sends them to the TSE data station. The data station generates a
random encryption key using Salsa20 256-bit stream cipher [18] to encrypt
the data files. The encrypted files are then digitally signed by each data
station using Elliptic Curve Digital Signature Algorithm (EdDSA) [19].
Salsa20 and EdDSA are both widely-applied encryption schemes in the field
and have the advantage of high-speed and high-security [20, 21]. However,
they suffer from the data-dependent timing variation which means the
execution time of the encryption algorithms is dependent on the size of
the data [22]. By measuring the time for each operation in the encryption
and analyzing the encryption time taken, an attacker could possibly trace
back to the input data. Therefore, we applied the McBits algorithm, a
constant-time fast implementation for the public-key encryption systems in
the infrastructure to have a full protection against the timing attacks [22, 23].
The analysis model file is a configurable Python script where the researcher
can choose different predefined models and modify the parameters based on
their analysis plans and send them to every participating data organization.
Only when the model file is evaluated and approved by all organizations,
can it be signed and transferred to the TSE data station.

The second application train is executed at the TSE data station. The TSE sta-
tion maintains the private keys to verify the signatures and decrypt the data
files from each data organization. After getting verified and decrypted, the
data can be linked and merged by pseudonymized personal identifiers. As
the pseudonymization is one-way hashing and performed at the data stations
of sources, it is not able to reverse or decrypt the hashed personal identifiable
features. After executing the analytical algorithms on the merged dataset, the
TSE checks whether the results reveal any personal identifiable information.
Only the validated results that do not contain any personal identifiable infor-
mation are returned to the researchers. Finally, all received and created data
in the TSE are destroyed.
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4.2.1 Data linkage
To link data from multiple sources on each individual record, unique iden-
tifiers, such as national identification numbers or social security numbers,
must be available in every data source. The GDPR leaves it up to the na-
tional governments to determine the use of the national identification num-
ber. The Netherlands has adopted a very restrictive approach regarding the
use of the national identification number (Burgerservicenummer - BSN) to
prevent linking individuals over multiple sources. There are limited situa-
tions that allow for the use of the BSN, for example uses by governmental
entities, matters related to tax, and health and educational institutes (for ad-
ministrative / financial purposes) However, BSN as the most reliable identi-
fier cannot be used for scientific purposes. To achieve compliance with Dutch
law, we pseudonymised a combination of personal features including gen-
der, date of birth, zip code, and house number. Two data parties formal-
ized these four features into the same data formats and presentations before
pseudonymisation. Since neither of the two parties is allowed to know the
data subjects from the other party, CBS provided all residents who were be-
tween 40 and 75 years old and lived in the south of the Netherlands in 2010
to 2013. Considering people might move out/in this area during these years,
the address histories of the residents were also included to increase the num-
ber of matches using our created identifier. The healthcare cost dataset from
CBS contains more than 1 million records including duplicate citizens with
different addresses.

To pseudonymise the combination of personal features at data sources, one-
way hashing method (SHA-512) was applied for pseudonymisation. One-
way hashing method turns any format of data into a fixed-length “finger-
print” that cannot be reversed. Salt, as a random string, is appended to data
before hashing, to eliminate the risk of malicious decryption. This salt needs
to be agreed and shared by two data organizations. The pseudonymized per-
sonal features are not related to a specific person anymore, but shared hash-
ing function and salts make it possible to link two datasets.

4.2.2 Data Analysis and experiment settings
After data linkage, all analyses of this study were conducted on the merged
dataset. All steps (data linkage, creating the merged subset, and the analysis)
were composed into one application train and executed at the TSE without
human interference. The descriptive characteristics of the study population
were first generated and presented as mean with standard deviation for con-
tinuous features or as numbers and percentages for categorical features based
on the three groups of participants without diabetes, with pre-diabetes, and
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with T2DM. The pairwise correlations were calculated using Pearson’s cor-
relation method to observe the linear correlations between features [24]. The
healthcare costs were calculated based on the average of the annual health-
care cost over all categories from 2010 to 2016. Regression models have been
commonly employed in the previous studies to examine the relationship be-
tween diabetes and healthcare costs [25, 26, 27]. In our study, we applied or-
dinary least squares linear regression models to examine the associations of
T2DM with every category of healthcare cost and with covariates of lifestyle
and complications. The associations were presented using regression coeffi-
cients (coef) with 95% Confidence Intervals (CI) and P-value. The basic linear
regression model (model 1) was adjusted for sex, age, and educational level.
Model 2 was additionally adjusted for complications features including BMI,
movement limitation, history of cardiovascular disease, hypertension, and
depression. Model 3 was additionally adjusted for smoking status, alcohol
consumption, energy intake, Mediterranean-diet score, physical activity.

All analyses were built up as an executable application in Docker (V19.03.8)
using Python (V3.6.9), Scikit Learn (V0.21.3), and Statsmodel (V0.11.1) Python
libraries. Encryption methods were applied using Pynacl (V1.3.0), Crypto
(V1.4.1) and Pycrypto (V2.6.1). Two data stations at CBS and the Maastricht
Study were built up in an Ubuntu 18.4 LTS machine with 2 CPU, 6GB RAM
and 60GB storage. The TSE station was employed in an Ubuntu 18.04 LTS ma-
chine with 2 CPU, 4GB RAM and 40GB storage. The code of the infrastructure
and data analysis is published on: https://gitlab.com/CBDS/DataSharing.

4.3 Datasets and materials
We requested health-related data including demographic data, life-style, T2D
status and its complications from the Maastricht Study and data about in-
dividuals annual healthcare costs from the Statistics Netherlands (CBS). The
annual healthcare costs data is provided by Vektis, a company in the Nether-
lands that streamlines healthcare processes and collects information about
healthcare cost declarations. This section describes the datasets and the ap-
proaches of linking and analyzing two datasets without revealing original
data using the secure infrastructure. At last, the analysis models are pre-
sented to examine the association between T2DM and healthcare costs.

4.3.1 Health-related data from The Maastricht Study
The health-related data from the study participants is provided by the Maas-
tricht Study including individuals’ demographic, socioeconomic, lifestyle,
T2DM status, and its complication data. The rationale and methodology have
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been described previously [9]. We requested cross-sectional data from partic-
ipants who completed the baseline survey between 2010 and 2013. The eligi-
bility of participation of the Maastricht Study were individuals aged between
40 and 75 years and living in the southern part of the Netherlands. Partici-
pants were recruited through mass media campaigns, from the national mu-
nicipal registries, and the regional Diabetes Patient Registry via mailings [9].
Due to the purpose of data linking and joint analysis, this study requested ad-
ditional permissions to link participants’ data between the Maastricht Study
and CBS. In the analysis, we included 13 features which were categorized
into diabetes outcome, demographic characteristics, socioeconomic condi-
tions, T2DM complications, and lifestyle. An overview of features is shown
in Figure 4.2. The collection method and measure of variables is summarized
in the following subsections.

Figure 4.2: Overview of health-related data collected from the Maastricht Study.

Diabetes outcome. The definition of T2DM status was based on the World
Health Organization’s diagnostic criteria of glucose tolerance status [28]. Par-
ticipants were categorized into no-diabetes, prediabetes, and T2DM. Partici-
pants with no diabetes have normal glucose metabolism (fasting plasma glu-
cose < 6.1 mmol/l and 2 h plasma glucose (after glucose load) < 7.8 mmol/l),
while participants with pre-diabetes have imparied fasting glucose (fasting
plasma glucose 6.16.9 mmol/l and 2 h plasma glucose < 7.8 mmol/l) or
imparied glucose tolerance (fasting plasma glucose < 7.0 mmol/l and 2 h
plasma glucose ≥ 7.0 - 11.1 mmol/l). Pre-diabetes is an intermediate but
high-risk state for diabetes. 5-10% of people per year with prediabetes will
progress to diabetes, with the same proportion converting back to normo-
glycemia [29]. Participants with T2DM have fasting plasma glucose ≥ 7.0
mmol/l or 2 h plasma glucose ≥ 11.1 mmol/l.
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Demographic characteristics include age, sex, and educational level. Educa-
tional level of the participant was collected by a questionnaire and was cate-
gorized into 3 classes: 1) no education or primary education not completed or
primary education or lower vocational education; 2) intermediate vocational
education or higher secondary education; 3) higher professional education or
university education.

Complications category includes calculated BMI and self-reported informa-
tion on mobility limitation, history of cardiovascular disease, hypertension,
and lifetime depression. BMI was calculated as weight (kg) / height2 (m).
Mobility limitation (yes/no) was defined as whether the participant has diffi-
culty walking 500 m or climbing the stairs. History of cardiovascular disease
(yes/no) was defined as whether the participant has a history of disorders
of the heart and blood vessels. Hypertension (yes/no) was based on the av-
erage blood pressure and antihypertensive medication use. Lifetime depres-
sion (yes/no) was defined as if participants experienced depressive disorder
in their lifetime.

Lifestyle factors include the following self-reported health behavior: physi-
cal activity, dietary, smoking and alcohol consumption. Physical activity was
measured and categorized into low, medium, and high physical activity. Par-
ticipants’ dietary patterns were scored by the 10-point Greek Mediterranean-
diet scale as the main measurement of dietary intakes [30, 31]. Smoking status
was categorized as: never-smokers, former-smokers, and current-smokers.
Alcohol use was categorized as: non-consumers, low-consumers, and high-
consumers. Extended explanation of each variable in Complications and
Lifestyle categories can be found in the Appendix.

4.3.2 Study population healthcare costs data from Statistics
Netherlands (CBS)

Due to privacy concerns, the two data organizations cannot share identifiable
information or communicate which individuals are included in this study. To
link two datasets, CBS prepares data of the annually declared healthcare cost
data from all residents aged between 40 and 75 years living in the southern
part of the Netherlands between 2010 and 2016. Over 1 million individu-
als are included in the dataset from CBS. The healthcare costs in this study
comply with the Health Insurance Act [32] in the Dutch Basic Health Pack-
age that healthcare providers and insured persons have declared to health
insurers and have got reimbursed between 2010 and 2016. The basic health
package is mandatory in the Netherlands and contains the same healthcare
products for everyone in the country. The coverage and availability of the
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healthcare services from the Dutch Basic Health Package provides the most
comprehensive and reliable healthcare costs data for this study [32, 33].

Figure 4.3: Overview of healthcare cost features collected from 2010 to 2016 by Vektis and
accessed from the Statistics Netherlands (CBS)

This study includes 10 categories of healthcare costs (as Figure 4.3 shows):
general practitioner (family doctor) care, paramedical care, medical aids, hos-
pital transport, hospital care, pharmacy, primary (first-line) psychological
care (2010-2013) / basic mental health care (2014-2016), (second-line) mental
health care (2010-2013) / specialist mental health care (2014-2016), multidis-
ciplinary care (2015-2016), and other health care. The multidisciplinary care
is for patients with chronic conditions requiring the help of multiple doctors
and health care providers. Type 2 diabetes, chronic obstructive pulmonary
disease, and cardiovascular diseases were included in this healthcare cate-
gory. Definitions and the coverage of each healthcare cost feature are pre-
sented in Table A .4 in the Appendix.

Figure 4.4 illustrates the flowchart of how the data was selected for the fi-
nal analyses from two data sources. First, we excluded 168 participants who
did not give consent to link their health data from the Maastricht Study with
any data from CBS. After pseudonymizing and matching the two datasets,
we excluded 845 participants who had missing values in their health-related
features and 125 participants who had missings in their healthcare cost data.
At the end, data from 2313 participants’ are included in the final analysis.
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Figure 4.4: A flowchart of data selection by excluding participants with missing values in the
features. Numbers of missing values do not add up to the number of excluded participants.

Participants may have missing values in multiple features.

4.4 Results
4.4.1 Data linkage between two data sources
The data with 3283 participants from the Maastricht Study and data
with 1009309 participants from CBS were matched and linked by the
pseudonymized linking features in the TSE data station. Pseudonymizing
linking features and encrypting the data files only happen at the data
sources, while verification, decryption and matching datasets are only
executed at the TSE station.

85



Chapter 4. Studying the Association of Diabetes and Healthcare Cost on
Distributed Data from The Maastricht Study and Statistics Netherlands
using a Privacy-Preserving Federated Learning infrastructure

Table 4.1 shows the matching results and time costs using the real data in
a practical setting. 96% of the participants from the Maastricht Study were
successfully found and matched with the unique corresponding healthcare
cost data records in the CBS dataset. There were 121 participants not being
found in the CBS dataset, while 17 were found with multiple data records.
The total time consumption of the whole process is approximately 37 mins.
The most time-consuming step is the pseudonymization of linking features at
the party with most data entries (1838 sec), followed by the matching process
with 316 sec.

Table 4.1: Time performance for each step of method at different data stations.
Data Station CBS Maastricht Study TSE
#Records 1 009 309 3 283 -

Time (sec)

Pseudonymize 1838.75 9.96 -
Encrypt 47.46 0.18 -
Verify & decrypt - - 32.10
Match - - 316.67

Matches
Unique - - 3145
Multi - - 17
Non - - 121

4.4.2 Descriptive analysis
After linking two datasets and removing instances with missing values, the
study population consisted of 2313 participants, of whom 580 (25.1%) were
diagnosed with T2DM. This portion is higher than the prevalence of diabetes
in the Netherlands which is 6.1% (male: 7.0%, female:5.3%) [34], because
the recruitment of the Maastricht Study was stratified according to known
T2DM status, with an oversampling of individuals with T2DM [9]. In addi-
tion, 15.7% of participants (n=364) were recognized with pre-diabetes, while
59.2% (n=1369) of participants had no diabetes. Table 4.2 presents the baseline
characteristics of the study population stratified by diabetes status.

The entire study population had a gender ratio at almost 1:1 (50.2% were
male, 49.8% were female) and a mean age of 59.7 (± 8.1) years. However,
more females (58.4%) were in the group of participants without diabetes,
while males became the majority in the groups of participants with predi-
abetes (53.3%) and T2DM (68.3%). The participants with prediabetes and
T2DM had a slightly higher age at 61.7 (± 7.7) and 62.4 (± 7.6). The ma-
jority of participants without diabetes had a higher level of education and
averagely lower BMI compared to people with prediabetes and T2DM. In the
lifestyle category, participants with T2DM were more often current smokers,
were less often consumed high levels of alcohol, and spent less hours doing
moderate to vigorous physical activities on a weekly basis compared to peo-
ple with prediabetes or no diabetes. Participants with and without T2DM
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have the same dietary score, which was gently higher than that of partici-
pants with prediabetes. Regarding T2DM complications, participants with
T2DM had significantly higher percentages of people suffering from limited
mobilities, hypertension, and cardiovascular disease.

Table 4.2: Descriptive characteristics of the study population
Health-related features from the Maastricht Study

Features Unit Total No Diabetes Prediabetes T2DM
n= 2313 n=1369 n=364 n=580

Sex % men 1160 (50.2%) 570 (41.6%) 194 (53.3%) 396 (68.3%)
Age years 59.7±8.1 58.0±8.1 61.7±7.7 62.4±7.6

Education
level (%)

Low 732 (31.6%) 348 (25.4%) 130 (35.7%) 254 (43.8%)
Medium 664 (28.7%) 391 (28.6%) 103 (28.3%) 170 (29.3%)
High 917 (39.6%) 630 (46.0%) 131 (36.0%) 156 (26.9%)

BMI kg/m2 27.0±4.4 25.5±3.5 27.9±4.4 29.9±4.9

Smoking
status

None 842 (36.4%) 568 (41.5%) 110 (30.2%) 164 (28.3%)
Former 1209 (52.3%) 651 (47.6%) 217 (59.6%) 341 (58.8%)
Current 262 (11.3%) 150 (11.0%) 37 (10.2%) 75 (12.9%)

Alcohol
consumption

Never 384 (16.6%) 171 (12.5%) 55 (15.1%) 158 (27.2%)
Low 1317 (56.9%) 809 (59.1%) 197 (54.1%) 311 (53.6%)
High 612 (26.5%) 389 (28.4%) 112 (30.8%) 111 (19.1%)

Dietary score 1-9 4.7(1.7) 4.5(1.6) 4.2(1.5) 4.5(1.6)
Physical
Activity hr/week 5.6±4.3 6.2±4.4 5.2±4.1 4.4±4.1

Mobility
limitation % yes 455 (19.7%) 175 (12.8%) 84 (23.1%) 196 (33.8%)

MINI lifetime
depression % yes 690 (29.8%) 398 (29.1%) 115 (31.6%) 177 (30.5%)

Hypertension % yes 1287 (55.6%) 566 (41.3%) 236 (64.8%) 485 (83.6%)
Cardiovas-
cular disease % yes 358 (61.7%) 160 (6.9%) 48 (3.5%) 150 (41.2%)

Average healthcare cost data from CBS (Currency: euros)
Category Years Total No Diabetes Prediabetes T2DM
GP care 2010-16 168.9±84.4 151.5±68.6 172.6±73.9 207.8±108.1
Pharmacy 2010-16 460.6±738.5 269.5±457.8 399.7±577.8 950.0±1070.0
Hospital care 2010-16 1550.5±2649.2 1205.5±2099.6 1517.9±2413.7 2385.2±3602.2
Paramedical 2010-16 64.4±290.5 52.4±281.6 69.5±254.7 89.4±328.6
Medical aids 2010-16 128.8±508.8 61.8±265.9 88.8±186.5 311.9±894.4
Hospital
transport 2010-16 20.5±160.0 12.3±44.3 15.2±51.5 43.4±308.7

Specialist
mental health

2010-13 10.0±87.1 9.7±93.2 16.5±97.7 6.4±61.2
2014-16 125.3±731.4 118.1±658.8 159.0±1086.9 121.2±607.5

Multidiscip-
linary care 2015-16 124.8±160.6 49.4±94.7 117.4±140.2 307.6±150.1

Other care 2010-16 88.0±135.8 28.0±70.0 74.0±149.0 238.5±129.7
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Figure 4.5: Annual healthcare costs on each healthcare category from 2010 to 2016.
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The average annual healthcare cost from 2010 to 2016 are presented in
Table 4.2. Participants with T2DM spent significantly more expenses than
participants with prediabetes, notwithstanding specialist mental healthcare,
multidisciplinary care, and other healthcare costs. Participants with
prediabetes incurred additional costs than people without diabetes. Costs
associated with multidisciplinary care and other healthcare were twice that
for those with prediabetes compared to those without diabetes, while the
costs of T2DM patients had doubled multidisciplinary care and tripled
other healthcare costs than participants with prediabetes. Participants with
prediabetes had the highest average cost in specialist mental health care.

Annual healthcare costs of each year from 2010 to 2016 are presented in Fig-
ure 4.5. For every year from 2010 to 2016, participants with T2DM spent
more healthcare costs than people with prediabetes and no diabetes in all
categories except mental health care. The excess amounts are most notice-
able in the categories of pharmacy, medical aids, multidisciplinary care, and
other healthcare. We observe the healthcare costs of participants had corre-
sponding increases and decreases in all groups, but with different trends and
degrees. Participants from all groups had the similar changing trend of GP
care and pharmacy costs from 2010 to 2016. By contrast, in the paramedical
care category, in 2012 participants with prediabetes had a significant decrease
compared to participants with and without T2DM. In 2013, participants with
T2DM and prediabetes had increased healthcare costs in paramedical care,
while people without diabetes kept decreasing the costs.

4.4.3 Regression analysis
Table 4.3 describes the associations of the average healthcare costs from 2010
to 2016 from different healthcare categories with prediabetes and T2DM sta-
tus. Model 1 is adjusted for sex, age, and level of education. Model 2 is ad-
ditionally adjusted for the T2DM complication features including BMI, mo-
bility limitation, history of cardiovascular disease, history of hypertension,
and lifetime depression. Model 3 is additionally adjusted for the lifestyle fea-
tures including smoking status, alcohol consumption, diet score, (moderate
to vigorous) physical activities. Compared to those without diabetes, model
1 shows people with prediabetes and T2DM had significantly higher costs in
GP care and pharmacy [Coef (Prediabetes - GP) = 12.10 euros (95% CI = 2.93,
21.28), [Coef (Prediabetes - pharmacy) = 96.01 euros (95% CI = 16.46, 175.55)]
, [Coef (T2DM - GP) = 45.91 euros (95% CI = 37.85, 53.97), Coef (T2DM - phar-
macy) = 629.81 euros (95% CI = 559.89, 699.73)]. After additional adjustment
for complication and lifestyle features in model 3, T2DM was still associated
with costs in GP care and pharmacy [Coef (T2DM - GP) = 26.39 euros (95%
CI = 17.73, 35.05), Coef (T2DM - pharmacy) = 387.14 euros (95% CI = 313.67,
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Table 4.3: Associations of the average healthcare costs (2010-2016) in different categories with
prediabetes and T2DM status. Results are presented as regression coefficients (B) with 95%
confidence interval (CI) using Ordinary Least Square in linear regression models. Bold fonts

indicate statistical significance (p <0.05).
Unadjusted model Model 1 Model 2 Model 3

B 95% CI B 95% CI B 95% CI B 95% CI

GP Care
No-DM Ref. Ref. Ref. Ref.

Pre-DM 21.17 11.79,
30.54 12.10 2.93,

21.28 5.56 -3.52,
14.64 4.20 -4.85,

13.24

DM 56.33 48.46,
64.21 45.91 37.85,

53.97 30.45 21.86,
39.03 26.39 17.73,

35.05

Pharmacy
No-DM Ref Ref. Ref. Ref.

Pre-DM 130.26 51.52,
208.99 96.01 16.46,

175.55 15.06 -61.86,
91.98 -2.78 -79.49,

73.94

DM 680.54 614.40,
746.70 629.81 559.89,

699.73 430.55 357.83,
503.27 387.14 313.67,

460.62

Hospital
care

No-DM Ref. Ref. Ref. Ref.

Pre-DM 312.48 11.39,
613.57 131.36 -173.01,

435.73 -11.05 -310.58,
288.47 -74.86 -374.78,

225.07

DM 1179.76 926.81,
1432.72 921.00 653.48,

1188.53 476.22 193.06,
759.38 343.16 55.90,

630.43

Paramed-
ical care

No-DM Ref. Ref. Ref. Ref.

Pre-DM 17.12 -16.44,
50.68 11.27 -22.80,

45.34 -0.54 -34.71,
33.62 -2.94 -37.32,

31.43

DM 37.01 8.81,
65.20 31.02 1.07,

60.97 -5.94 -38.24,
26.36 -13.88 -46.80,

19.04

Medical
aids

No-DM Ref. Ref. Ref. Ref.

Pre-DM 27.04 -30.53,
84.61 19.73 -38.82,

78.29 -9,66 -68.44,
49.12 -8.33 -67.24,

50.57

DM 250.03 201.66,
298.39 236.87 185.4,

288.34 159.32 103.75,
214.89 143.70 87.29,

200.12

Hospital
transport

No-DM Ref. Ref. Ref. Ref.

Pre-DM 2.94 -15.51,
21.39 0.49 -18.29,

19.28 -3,86 -22.94,
15.21 -4.44 -23.59,

14.71

DM 31.15 15.65,
46.66 28.36 11.85,

44.88 14.39 -3.64,
32.42 10.52 -7.83,

28.86
Specialist
mental
health
(2010-13)

No-DM Ref. Ref. Ref. Ref.

Pre-DM 40.90 -43.70,
125.49 70.99 -14.80,

156.77 47.08 -39.68,
133.85 48.59 -38.55,

135.72

DM 3.03 -68.04,
74.10 44.45 -30.96,

119.85 -9.53 -91.55,
72.50 -14.22 -97.67,

69.23
Specialist
mental
health
(2014-16)

No-DM Ref. Ref. Ref. Ref.

Pre-DM 124.28 21.60,
226.95 158.98 54.54,

263.42 152.63 45.88,
259.39 147.66 40.35,

254.97

DM 13.19 -73.07,
99.44 67.73 -24.07,

159.53 57.50 -43.43,
158.42 40.00 -62.78,

142.78
Multidis-
ciplinary
care

No-DM Ref. Ref. Ref. Ref.

Pre-DM 68.02 54.31,
81.73 55.77 42.05,

69.49 44.39 30.63,
58.15 45.02 31.20,

58.84

DM 258.25 246.74,
269.76 240.61 228.55,

252.67 217.00 204.99,
231.00 218.91 205.67,

232.15

Other
care

No-DM Ref. Ref. Ref. Ref.

Pre-DM 46.04 34.13,
57.95 39.20 27.16,

51.25 31.94 19.78,
44.10 32.04 19.84,

44.25

DM 210.54 200.54,
220.55 200.49 189.90,

211.08 183.49 171.99,
194.98 181.75 170.06,

193.44

460.62)]. But the association between prediabetes with these two costs is no
longer observable in model 3. We also found only T2DM were statistically
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significant associated with the costs of hospital care and medical aids inde-
pendent of complication and lifestyle features in model 3 [Coef (T2DM - hos-
pital) = 343.16 euros (95% CI = 55.90, 630.43), Coef (T2DM - medical aids) =
143.70 euros (95% CI = 87.29, 200.12)].

An association between T2DM and the costs of paramedical care was ob-
served in model 1 [Coef (T2DM - paramedical)= 31.02 euros (95% CI = 1.07,
60.97)]. In the adjusted models (model 2 and 3), this association was no
longer statistically significant in our study [Coef (T2DM - transport) = 14.39
euros (95% CI = -3.64, 32.42)]. T2DM was associated with the cost of hos-
pital transport, independent of complication features in model 2. We ob-
served that prediabetes was associated with specialist mental healthcare cost
(2014-2016) when adjusting for complications and lifestyle features in model
3 [Coef (prediabetes-mental)= 147.66 euros (95% CI = 40.35, 254.97)]. How-
ever, the similar association was not found from people with T2DM. People
with prediabetes and T2DM had significantly higher costs from multidisci-
plinary care and other healthcare services independent of all potential con-
founders from the complications and lifestyle categories [Coef (prediabetes -
multidis) = 45.02 euros (95% CI = 31.20, 58.84), [Coef (prediabetes - others) =
32.04 euros (95% CI = 19.84, 44.25)], [Coef (T2DM - multidis) = 218.91 euros
(95% CI = 205.67, 232.15), [Coef (T2DM - others) = 181.75 euros (95% CI =
170.06, 193.44)]. Both presented tight intervals of 95% CI and high statistical
significance. From the estimated coefficients, participants with T2DM spent
much more on multidisciplinary care and other healthcare than people with
prediabetes.

4.5 Discussion
4.5.1 Technical implementation of the secure infrastructure
This study examined the associations between healthcare costs from ten dif-
ferent healthcare categories and T2DM status considering complications and
lifestyle factors on vertically partitioned data using a new privacy preserving
data analysis infrastructure. We proved the feasibility of using the infrastruc-
ture to securely analyze sensitive personal health data across multiple inde-
pendent organizations in a real-life use case. The health-related data of 2313
participants from the Maastricht Study was matched and linked with health-
care cost data from 2010 to 2016 of over 1 million data records from Statis-
tics Netherlands using pseudonymised personal identifiable features (gender,
date of birth, zip code, house number) achieving the accuracy of data linkage
at 96%. Instead of centralizing multiple datasets to researchers or any data
sources, our approach established a Trusted Secure Environment (TSE) data
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station in the infrastructure with an ethical-legal framework under GDPR to
link multiple datasets and execute analyses on the linked data. Researchers
are able to send their analysis models to the TSE data station and get the anal-
ysis results back after information disclosure checking. The researchers never
received any original data or intermediate results which could potentially re-
veal the original data. In this study, we worked closely with our partners (The
Maastricht Study and Statistics Netherlands) and collaborated across disci-
plines including data science, statistics, computer science, law, and health to
install the infrastructure, and establish an ethical-legal framework between
two organizations.

Every time the analysis algorithms need to be executed, the requested data
is queried, prepared, and pseudonymized at its source. Any changes and
updates in the source data can be synchronously reflected in the study. For
instance, when participants inform the data organization to withdraw the
permissions for using their data, the organization only needs to remove their
data records in the data station. The future analysis will not contain any data
from the participants who withdraw the permission. It is significantly helpful
for data subjects to practice their right to withdraw their consent at any time
and reflect on the data use immediately.

We did experiments between two independent data parties using linear re-
gression models, but the number of participating parties and analysis algo-
rithms are not limited. Technically, new parties are able to participate in the
joint analysis by employing the infrastructure and generating public-private
key pairs and exchanging the public key with TSE. From an ethical-legal per-
spective, the new parties can construct a joint controller agreement similar to
the existing agreement with other participating parties and get informed con-
sent from the participants to link their personal data across organizations.

In the future, some improvements can be made to address the vulnerabilities
of the current infrastructure. Firstly, researchers design and send the anal-
ysis models to the original data without seeing the actual data. However,
in order to maximize the models’ performance, researchers usually need to
include new or exclude existing features, give different weights to features
based on their prior knowledge, or tune the parameters of the models by
training the models multiple times. Every model training using the infras-
tructure requires new pseudonymization and encryption at all data sources
and decryption, verification, linking and analysis at TSE which consumes
time, computation, and human resources. One approach to solve this limi-
tation can be providing researchers with synthetic data at data stations which
is structurally and statistically similar to the real data. Researchers will be
able to build the analysis models on the synthetic data, select the important
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features, and tune the parameters of models. Once the models perform suffi-
ciently accurate on the synthetic data, researchers can inform all data parties
and send the models to the real data. Furthermore, to comply with the data
use requirements from one of the participating parties, the final analysis re-
sults were checked by experts for the possibility of information disclosure
before being exported from the current infrastructure. For example, if the
dataset has less than 10 data points, the analysis cannot be conducted because
of the high risk of re-identification. In the future work, the output checking
can be automated and integrated into the infrastructure to some degree.

4.5.2 Data analysis in the use case
However, our findings have to be seen in light of some potential limitations.
Firstly, the declared healthcare costs data in our study covers the major
healthcare costs from the Dutch Basic Health Package, but it is possible that
people have additional expenses in other national health packages such as
Long-Term Care Package for whom require permanent or 24-hour home
care or Supplementary Insurance Package which is fully private in nature.
Some previous studies, which examined the relation between diabetes
and healthcare cost using data from different sources found comparable
discovery but using different data sources [35, 11]. So far, there is no single
source that could provide the full healthcare costs data [11]. Secondly, the
policies for the declaration and the coverage of healthcare services in the
Dutch Basic Health Package may change according to the updated policies
in the Dutch Health Insurance Act. For example, in 2012, the number of
physiotherapy and remedial therapy sessions for chronic disorders that
could be reimbursed was increased from 12 to 20. As participants got
more treatments reimbursed, their costs in the category of paramedical
care increased correspondingly. Another change happened in the mental
health care category in 2014. The primary (first-line) psychological care and
(second-line) mental health care were replaced by basic and specialist mental
health care. Patients with non-complex mental disorders or requiring mild
to moderate treatment are referred to the basic mental health care. Patients
with complex disorders are categorized as specialist mental health care. This
change could have a potential impact on the change of healthcare costs of
the participants.

Furthermore, rather than only focusing on the direct costs for T2DM treat-
ments or medications, this study includes the total healthcare costs which
includes T2DM and other comorbidities. The previous studies showed 85%
of T2DM patients suffering from at least one other chronic condition [11, 36].
However, due to the absence of the detailed information on the provided
healthcare service itself, we could not distinguish the costs for T2DM from
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other comorbidities. Finally, due to differences in healthcare systems, medical
practices, costs and declaration policies, it is difficult to accurately compare
our results with those based on other populations [37].

4.6 Conclusion
In this paper, we proved the feasibility of the proposed privacy-preserving
infrastructure in a real-life use case using personal health data which are ver-
tically partitioned at The Maastricht Study and Statistics Netherlands. As an
extension of Personal Health Train architecture, the infrastructure sends the
analysis models built by the researcher to the data, in an attempt to minimize
centralizing data from multiple sources to the researcher’s site. The data from
different sources was linked and analyzed at a Trusted Secure Environment
which is considered as an independent entity supported by an ethical-legal
framework. In the use case, we examined the association between predi-
abetes and T2DM and annual healthcare costs in different healthcare cate-
gories considering the impact of complications and lifestyle factors. We dis-
covered that individuals diagnosed with T2DM had significantly higher ex-
penses than those with prediabetes, while participants with prediabetes spent
more than those without T2DM in all the included healthcare categories.
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Chapter 4. Studying the Association of Diabetes and Healthcare Cost on
Distributed Data from The Maastricht Study and Statistics Netherlands
using a Privacy-Preserving Federated Learning infrastructure

Supplementary
Extended details in collection method and measurement of
health-related data
Diabetes outcome. The definition of T2DM status was based on the World
Health Organization’s diagnostic criteria of glucose tolerance status [28]. All
participants underwent a standardized 7-point OGTT after overnight fasting
except the participants who were insulin-dependent and participants with a
fasting glucose level higher than 11.0 mmol/l (as determined by finger prick).
Participants were categorized into no-diabetes, prediabetes, and T2DM. Par-
ticipants with no diabetes have normal glucose metabolism (fasting plasma
glucose < 6.1 mmol/l and 2 h plasma glucose (after glucose load) < 7.8
mmol/l). Participants with pre-diabetes have imparied fasting glucose (fast-
ing plasma glucose 6.16.9 mmol/l and 2 h plasma glucose (after glucose load)
< 7.8 mmol/l) or imparied glucose tolerance (fasting plasma glucose < 7.0
mmol/l and 2 h plasma glucose (after glucose load)≥ 7.0 - 11.1 mmol/l). Pre-
diabetes is an intermediate but high-risk state for diabetes. People with pre-
diabetes have glycaemic variables that are higher than normal, but lower than
diabetes thresholds. 5-10% of people per year with prediabetes will progress
to diabetes, with the same proportion converting back to normoglycemia [29].
Participants with T2DM have fasting plasma glucose ≥ 7.0 mmol/l or 2 h
plasma glucose (after glucose load) ≥ 11.1 mmol/l. Participants on diabetes
medication and without type 1 diabetes were also categorized into T2DM
class.

Complications category includes calculated BMI and self-reported informa-
tion on mobility limitation, history of cardiovascular disease, hypertension,
and lifetime depression. BMI was calculated as weight (kg) / height2 (m)
based on the measurement of weights and heights of the participant. Mobil-
ity limitation (yes/no) was defined as whether the participant has difficulty
walking 500 m or climbing the stairs in the 36-Item Short Form Health Survey
questionnaire [38]. History of cardiovascular disease (yes/no) was defined as
a history of myocardial infarction, cerebrovascular infarction or hemorrhage,
or percutaneous artery angioplasty of, or vascular surgery on, the coronary,
abdominal, peripheral, or carotid arteries. Hypertension (yes/no) was based
on the average blood pressure (systolic blood pressure ≥ 140 mmHg) and
antihypertensive medication use (diastolic blood pressure≥ 90). Lifetime de-
pression (yes/no) was assessed by the Mini International Neuropsychiatric
Interview (MINI) which is a short diagnostic structured interview to assess
the presence of minor or major depressive disorder in the participant’s life-
time [39].
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Lifestyle factors include the following self-reported health behavior: physi-
cal activity, dietary, smoking and alcohol consumption. Physical activity was
measured by modified CHAMPS questionnaire [40] and categorized into 1)
low physical activity (0 h to 9.75 h per week); 2) medium physical activity
(9.76 h to 16.25 h per week); and 3) high physical activity (more than 16.25
hours per week). Participants’ dietary patterns were collected by a Dutch
national tailor-made Food Frequency Questionnaire (FFQ) which assesses di-
etary intake frequency, amount of foods, and nutrients [31]. The outcome
of FFQ was scored (0-9 points) by the Greek Mediterranean-diet scale as the
main measurement of dietary intakes [30, 31]. The diet score ranged from 0
to 9 indicating minimal to maximal adherence to the Greek Mediterranean
diet. The Greek Mediterranean diet is low in saturated fat, high in monoun-
saturated fat, high in complex carbohydrates (from grains and legumes), and
high in fibre (vegetables and fruits) [30]. Smoking (cigarettes, cigars and/or
pipe tobacco) status was categorized as: never smokers, former smokers, and
current smokers. Alcohol use was categorized as: non-consumers (never con-
sumed alcohol), low-consumers (for women consuming≤ 7 glasses of alcohol
per week and for men consuming ≤ 14 glasses of alcohol per week), for high
consumers (for women consuming > 7 glasses per week and for men >14
glasses a week).
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The coverage of each Dutch healthcare category

Table .4: Cost coverage of each healthcare cost feature of healthcare providers [41]
Cost Period Coverage
General practitioner
(family doctor)

2010-
2016

Costs of registration fees, consultation fees, GP
practice module (POH), GP practice support (POH)
GGZ, arrears fund, modernization and innovation,
evening, night and weekend services (ANW), and
other costs for general practitioner care (including
passer-by rates).

Pharmacy 2010-
2016

Costs of pharmaceutical assistance, including phar-
macists’ fees and practical costs, module rate phar-
maceutical help by dispensing general practitioners
and module rate separate from care and trade.

Hospital care 2010-
2016

Costs for regulated and free segment DBC care prod-
ucts, add-ons, specialists for oral diseases and oral
surgery, extramural specialists, and other hospital
care and curative care costs.

Paramedical care 2010-
2016

Costs for physiotherapy, remedial therapy, speech
therapy, occupational therapy and dietary advice.

Medical aids 2010-
2016

Costs for the medical devices that people use at
home. The content of the cover varies from personal
care items (e.g. incontinence materials and diabetes
test strips) to equipment (e.g. hearing aids and or-
thopaedic footwear).

Hospital transport 2010-
2016

Cost of transport by ambulance, helicopter, taxi, pub-
lic transport, and own car.

Primary psychologi-
cal / basic mental
healthcare

2010-
2013

Cost of the treatment of mild to moderate psycholog-
ical problems

GGZ / specialist
GGZ care

2014-
2016

Cost of the treatment of more serious psychological
problems

Special cost of gen-
eral practitioner care

2015-
2016

Costs of multidisciplinary care, remuneration of re-
sults and care innovation for GPs, and reward for re-
sults and innovation in multidisciplinary care.
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Abstract
Combining data from varied sources has considerable potential for knowl-
edge discovery: collaborating data parties can mine data in an expanded fea-
ture space, allowing them to explore a larger range of scientific questions.
However, data sharing among different parties is highly restricted by legal
conditions, ethical concerns, and/or data volume. Fueled by these concerns,
the fields of cryptography and distributed learning have made great progress
towards privacy-preserving distributed data mining. However, practical im-
plementations have been hampered by the limited scope or computational
complexity of these methods. In this paper, we greatly extend the range of
analyses available for vertically partitioned data, i.e., data collected by sep-
arate parties with different features on the same subjects. To this end, we
present a novel approach for privacy-preserving generalized linear models, a
fundamental and powerful framework underlying many prediction and clas-
sification procedures. We base our method on a distributed block coordinate
descent algorithm to obtain parameter estimates, and we develop an extension
to compute accurate standard errors without additional communication cost.
We critically evaluate the information transfer for semi-honest collaborators
and show that our protocol is secure against data reconstruction. Through
both simulated and real-world examples we illustrate the functionality of our
proposed algorithm. Without leaking information, our method performs as
well on vertically partitioned data as existing methods on combined data –
all within mere minutes of computation time. We conclude that our method
is a viable approach for vertically partitioned data analysis with a range of
real-world applications.
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5.1 Introduction
With technological developments in computational power and storage capac-
ity, an increasing amount of data is collected and stored by a variety of data
parties [1]. Over the past decades, data mining has been successful in ex-
tracting information from such datasets, but it is especially powerful when
various data sources are combined: collaborating data parties can mine data
in a larger feature space, allowing them to discover knowledge beyond their
individual potential. For example, in the medical domain, personal health
conditions are significantly affected not only by genetic and biological fac-
tors, but also by individual behaviour and social circumstances [2]. Combin-
ing those sources has the potential to improve analytical models for health
outcomes [3, 4].

However, there is a pertinent obstacle to unlocking the potential of combining
datasets: integrating various sources may reveal private information about
individual data subjects to the collaborating parties. Hence, data sharing is
highly restricted by legal and ethical concerns. This highlights the need for
privacy-preserving techniques which perform data mining tasks on multiple
sources without explicitly sharing their full data [5, 6, 7, 8]. In this paper, we
extend the range of analyses available in such a vertically partitioned data
situation. Specifically, the contributions of this paper are as follows:

1. we develop a distributed block coordinate descent (BCD) algorithm for
performing generalized linear modeling (GLM) in vertically partitioned
data across two or more parties.

2. we create a completely novel extension to BCD for computing standard
errors without additional communication cost.

3. we analyze the privacy-preserving properties and information transfer
associated with this algorithm for semi-honest parties.

4. we provide an open-source implementation of this algorithm and show
experimentally that it performs as well as existing GLM methods in
real-world datasets in acceptable time.

These contributions push the boundary of data analysis with vertically parti-
tioned data, as GLM is a powerful framework for prediction and classification
at the basis of a wide range of analysis applications, including linear models,
count and survival models, and logistic regression [9, 10, 11]. All of these
methods are implemented in privreg, an open-source software package for
the R programming language [12]. This implementation includes encryption
for all communication across parties based on a pre-shared key, and includes
a user-friendly interface based around an object-oriented architecture. The
package is available for installation from the supplementary materials.
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This paper is organized as follows. In Section 5.2, related work is discussed
to contextualize our contribution. In Section 5.3, we introduce our proposed
method for GLM on vertically partitioned data. Next, we describe the infor-
mation sharing characteristics of this protocol in Section 5.4, and we analyze
how the information transfer affects the ability of the partner organisation to
recover the collaborator’s data. In Section 5.5, we benchmark our implemen-
tation of the protocol against full-data analysis using three different real-life
data sets from the UCI Machine Learning repository [13]. Finally, we dis-
cuss the strengths and limitations of our approach in Section 5.6 and provide
suggestions for future research.

5.2 Related work
In practice, there are two main types of data partitioning [14]. Different data
sources might collect the same features of different data subjects, e.g., dif-
ferent hospitals collect the same type of data from their own set of patients.
This situation is referred to as horizontally partitioned data. Alternatively, sep-
arate sources might collect different information from the same data subjects,
e.g., medical data collected by a hospital may be combined with socioeco-
nomic data collected by a governmental department from the same group of
people. This situation is referred to as vertically partitioned data, which is the
focus of the current paper. A third scenario, where data are both vertically
and horizontally partitioned, is referred to as hybrid partitioning.

This study aims to perform supervised learning on vertically partitioned data
without raw data leaks between the collaborating parties (Alice and Bob). In
order to analyze such data, either the dataset may be combined but hidden
from the collaborating parties, or the analytical procedure should prevent
leaking of information. The former relies on the inclusion of a trusted third
party (TTP): Each party sends their encrypted data to the TTP, who then per-
forms the required analyses on the combined data sets. Afterwards, the TTP
returns the results to all data parties and the raw data of Alice stays hidden to
Bob. However, this solution requires all parties to fully trust the TTP, which
might not be possible in the face of restrictive legislation or sensitive data.

There is another class of methods which do not rely on a TTP, instead using
cryptography to perform data mining tasks on vertically partitioned data.
These methods focus on preventing information leakage by creating proto-
cols which hide the raw data from the collaborators (e.g., for the construc-
tion of decision trees [15]). Secret sharing protocols, encryption schemes, or
a combination of them are commonly applied in this class of methods. Du
et al. [5, 16] investigated combining an oblivious transfer protocol and homo-
morphic encryption schemes to perform secure matrix computation for linear
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least squares regression and classification problems. However, the methods
are limited to only two participating parties. Several studies [8, 17, 18, 19]
applied and extended more general secure multiparty computation protocols
(e.g., the garbled circuit protocol [20]) to perform linear regression on verti-
cally partitioned data. [8, 17] and [18] assume the model training is delegated
to a small group of computing servers that do not collude with each other.
However, due to the expensive communication cost, the computation proto-
cols are challenging to be ported cross multiple servers in practice [21]. If
any collusion exists among the parties, the methods are not sufficiently se-
cure anymore [22, 23]. This class of methods also have the potential risk of
information leakage due to intermediate data shared by all parties [19]. It is
possible for some parties to deduce the original data from other parties. Fang
et al. [19] applied fully homomorphic encryption in their computation pro-
tocols and required no interaction among parties to avoid information leak-
age from intermediate data. However, their method cannot be generalized to
non-linear models.

Yet another approach leverages algorithms from federated or distributed learn-
ing, a field researching data mining on separated datasets [24, 25, 26]. One
of the early implementations and canonical examples is proposed by [27],
who developed a method to compute global linear regression coefficients it-
eratively based on an algorithm by [28]. However, the security during com-
putation is not equally guaranteed for different participating parties. The
party who has smaller number of variables or who starts the training itera-
tion is less secure compared to others. Other authors leverage specific dis-
tributed learning algorithms to implement regression models for vertically
partitioned data such as ridge regression [29], logistic regression [30, 31], and
a three-server regression model [32]. Our method is closely related to this
branch of research. Unlike existing regression methods from the TTP or cryp-
tography fields, our method does not make use of a trust assumption or com-
plex cryptographic protocols, but it relies on a federated learning algorithm
which never moves the data from its original location. In the next section,
we explain the concept and implementation behind our proposed privacy-
preserving GLM technique.

5.3 Materials and methods
We propose using a distributed form of block coordinate descent (BCD) to es-
timate generalized linear models in a situation where data is vertically par-
titioned across two or more parties. In BCD, parameters are iteratively up-
dated for each block of features, cycling over the blocks until an optimum is
found [33]. This optimization algorithm can be seen as a form of distributed
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learning [34, 35] where the features remain in different locations. Only linear
predictions need to be transferred across the feature blocks – the full data is
never shared.

For the remainder of the paper, we assume that the records of the data sub-
jects are in the same order across databases, in line with [8]. This can be done
using pre-existing identifiers or via probabilistic record linkage [36]. Further-
more, we only consider the situation where the target attribute is available to
both parties, following [27]. This restriction can be relaxed in case correlated
targets are available at different locations – a situation akin to distributed
multi-task learning [37, 38, 39] – but for simplicity we leave this extension to
future work.

In this section, we build up the BCD algorithm from the simpler case of lin-
ear regression before extending it to full GLM. Therefore, we first explain
the necessary background on linear regression, as well as the notation used
throughout this paper. Then, coordinate descent estimation is introduced as
a means to estimate its maximum likelihood coefficients. In Section 5.3.3,
this algorithm is then extended to accommodate a vertically partitioned data
structure, and in Section 5.3.4 we generalize it to different outcome families
in order to estimate GLMs. Finally, we develop a novel method to obtain
standard errors within this framework.

5.3.1 Background
We consider the centered design matrix with features X ∈ RN×P and the
centered target variable y ∈ RN×1, where N is the sample size, or number
of observations, and P is the number of features. The pth column in X is
represented as xp. The columns in X excluding the pth are denoted as X -p.

The basic regression model is then as follows:

y = Xβ + ϵ (5.1)

where β ∈ RP , ϵ ∼ N (0, σ2I), and ϵ ⊥ X . The well-known closed-form
maximum likelihood estimator of the P regression coefficients β in this model
is:

β̂ = (XTX)−1XTy (5.2)

We further define the vector of predicted values as ŷ = Xβ̂ and the vector of
residuals as ϵ̂ = y − ŷ.

108



5.3.2 Cyclic coordinate descent estimation
When instead of the full design matrix X we consider only the pth variable,
the estimator in Equation 5.1 yields the marginal regression coefficient. Thus,
by simplifying Equation 5.1 to the univariate case, the marginal coefficient for
the pth variable β∗

p is estimated as

β̂∗
p =

⟨xp,y⟩
⟨xp ,xp⟩

=
cov(xp ,y)

var(xp)
(5.3)

where ⟨· , ·⟩ indicates the inner product of two vectors. The covariance/vari-
ance notation holds because we assume a centered design matrix X and out-
come variable y.

If xp covaries with any of the predictors in X -p, the marginal coefficient β∗
p

is different from the conditional coefficient βp. The estimate of this coefficient
is an element of β̂ in Equation 5.1, but it can equivalently be estimated in a
coordinate-wise, univariate manner [33] as follows:

β̂p =
⟨xp, ϵ̂-p⟩
⟨xp ,xp⟩

=
⟨xp ,y −X -pβ̂-p⟩
⟨xp ,xp⟩

=
⟨xp ,y⟩
⟨xp ,xp⟩

−
⟨xp ,X -pβ̂-p⟩
⟨xp ,xp⟩

(5.4)

The residual ϵ̂-p = y −X -pβ̂-p is the residual with respect to the variables ex-
cluding xp, evaluated at the maximum likelihood (ML) estimates of β. Equa-
tion 5.4 states that the conditional regression coefficient can be obtained by
computing the marginal regression coefficient of ϵ̂-p on xp. This relation holds
because ϵ̂-p represents the part of the outcome variable unrelated to X -p – by
definition, ϵ̂-p ⊥X -p. In addition, the last part of Equation 5.4 shows that the
marginal and conditional estimate of the pth regression coefficient are equal
if xp and X -p do not covary, because the last term drops out.

The coordinate-wise estimation of β̂p (Equation 5.4) requires the maximum
likelihood estimates β̂-p of the remaining variables to be known. However,
when estimation of β̂ is the goal, these estimates are not available. This can
be solved by an iterative updating procedure of the β̂ estimates:
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Algorithm 1: Cyclic coordinate descent [33]

1. Initialize β̂ ← β̂
∗

(marginal coefficients)

2. For each p ∈ P :

a) ϵ̂-p ← y −X -pβ̂-p

b) β̂p ← ⟨xp , ϵ̂-p⟩ / ⟨xp ,xp⟩

3. Repeat step (2.) for R iterations until convergence (i.e.,
the change in parameter estimates over iterations be-
comes negligible)

An advantage of this method is that it does not require storing the full P ×
P covariance matrix in memory, and this matrix does not need to be in-
verted – an O(P 3) operation. This advantage becomes especially relevant
as P grows [33]. Another advantage is that this estimation method allows for
regularization to be implemented naturally. For example, the ℓ1 penalized
parameters can be computed by soft-thresholding ⟨xp , ϵ̂-p⟩ in each iteration.
This is the approach taken by the popular regularized regression package
glmnet [40].

A graphical display of the behaviour of the estimated parameters during the
cyclical coordinate descent procedure is shown in panel A of Figure 5.1. Here,
9 covarying features X were generated from a multivariate normal distribu-
tion. Then random parameter values β and random normal errors ϵ were
created and used to generate the target variable y = Xβ + ϵ.

Next, we show how coordinate descent generalizes to blocks of variables, and
how it may be used to estimate linear regression coefficients in the vertically
partitioned data scenario described above.

5.3.3 Securely estimating coefficients for linear regression
In this section, we develop the framework for analysing vertically partitioned
data. Our key contribution is the combination of two observations:

1. Coordinate descent estimation works the same for single features as
well as for blocks of features – resulting in a variant called block co-
ordinate descent (BCD) [33].

2. Vertically partitioned data is blocked data – the features held by Alice
can be considered the 1st block, and those held by Bob the 2nd block.

Following these two observations, Algorithm 2 below thus provides an itera-
tive estimator for the parameters of Alice (βa) and those of Bob (βb) through
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sharing of predictions. Predictions from Alice are written as ŷa = Xaβ̂a, and
the working residual with respect to Alice, i.e., the part of y not related to the
features in Xa is then ϵ̂a = y − ŷa.

Algorithm 2: Secure block coordinate descent

1. Initialize ŷb ← 0

2. Alice:

a) ϵ̂b ← y − ŷb

b) β̂a ← (XT
aXa)

−1XT
a ϵ̂b

c) ŷa ←Xaβ̂a

d) Send ŷa to Bob

3. Bob:

a) ϵ̂a ← y − ŷa

b) β̂b ← (XT
b Xb)

−1XT
b ϵ̂a

c) ŷb ←Xbβ̂b

d) Send ŷb to Alice

4. Repeat step (2.) and (3.) for R iterations until conver-
gence.

Since the least-squares objective is strictly convex, the above algorithm is
guaranteed to converge to the global minimum [41]. Upon convergence, the
concatenated parameter estimates vector (β̂a, β̂b) is equal (up to a small pre-
determined tolerance value) to the parameter estimates vector that would be
obtained using the standard maximum likelihood estimator in the combined
data set [42]. It follows that the element-wise summed prediction ŷa + ŷb is
equal to the prediction ŷ that would be obtained from the combined dataset.
Thus, prediction can be done without sharing the parameter estimates. Fur-
ther analysis of the privacy-preserving properties of this procedure is dis-
cussed in Section 5.4.

In panel B of Figure 5.1 we illustrate BCD, applied to the same data set as
in panel A. However, instead of P blocks of 1 feature each, now there are
two blocks with 5 and 4 features. BCD reaches convergence with fewer it-
erations than the cyclic version, because it uses more information about the
covariance between the features. In general, convergence is obtained faster
with fewer blocks, and with less covariance between blocks [35]. In the case
of orthogonal blocks, only a single iteration is needed for convergence as the
marginal estimates equal the conditional estimates. Li et al. [43, Theorem 8]
derived a general result about the iteration complexity of BCD, showing that
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for smooth convex losses such as the GLM log-likelihood, the number of iter-
ations required for convergence is linear in the number of features P .

In the next section, we show how our BCD approach may be modified to es-
timate generalized linear model coefficients for a wide range of applications.
Then, we provide a way to estimate standard errors within this framework.

Figure 5.1: Panel A: Coordinate descent paths for linear regression with 9 covarying features,
simulated from a multivariate normal distribution. The parameter lines converge from the

marginal ML estimates (iteration 1) to the conditional ML estimates (iteration 10000). Note
that the x-axis is on a logarithmic scale and convergence happens around iteration 1000.

Panel B: Block coordinate descent path for regression with 9 covarying predictors, applied to
the same simulated dataset. There are two blocks, indicated by the line types. Note that

convergence happens before iteration 500, faster than the cyclic coordinate descent algorithm.
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5.3.4 Extension to generalized linear models
Extending this procedure to generalized linear models (GLM) requires a
slightly different estimation approach: whereas the parameter estimates of
full-data linear regression can be found analytically (Equation 5.2), GLM
requires an iteratively reweighted least squares (IRLS) procedure [44, 45]. In
each iteration i in full-data GLM, the estimates are computed as follows:

β̂
(i+1)

= (XTW (i)X)−1XTW (i)z(i) (5.5)

Here, W is a diagonal weights matrix and z is a transformation of the target
variable called the working response, computed as

z(i) = η(i) + (y − µ(i))

(
dµ(i)

dη(i)

)
(5.6)

where η(i) = Xβ̂
(i)

and µ(i) is a function of η(i) as predefined in the link func-
tion [e.g., logit link for logistic regression; 9]. From this working response, a
working residual needs to be obtained which acts like ϵ̂-p in Equation 5.4: a
response vector orthogonal to the predictors excluding feature p. We define
this working residual as follows [40]:

ϵ̂-p = z −X -pβ̂-p (5.7)

Using this working residual and the usual weights matrix from GLM, the
coordinate descent algorithm proceeds in a similar fashion to that of linear
regression (Algorithm 1). Just as with coordinate descent for linear regres-
sion, this algorithm readily extends to a blockwise procedure, meaning it can
be adapted for the private regression method as discussed in Section 5.3.3.
In many practical cases (e.g., no degeneracies in data matrix), the negative
log-likelihood used as the objective in GLM is strictly convex [46], hence the
block coordinate descent algorithm is guaranteed to converge to a global min-
imum [41].

5.3.5 Computing standard errors
A key component of inference in regression models is obtaining a measure of
sampling uncertainty about the obtained estimates, usually standard errors.
Under the assumptions of maximum likelihood theory, the limiting distribu-
tion of the deviation of the parameter estimates is the following:

√
N(β̂N − β)

d−→ N (0,Σβ) (5.8)

113



Chapter 5. Privacy-Preserving Generalized Linear Models on Vertically
Partitioned Data using Distributed Block Coordinate Descent

where Σβ is the asymptotic variance-covariance matrix of β̂:

Σβ = var(β̂) = σ2(XTX)−1 (5.9)

In linear regression, σ̂2 = ⟨ϵ̂ , ϵ̂⟩/(N − P ) and the standard errors of β̂ can be
computed as

ŝeβ̂ =

√
diag(σ̂2(XTX)−1) (5.10)

Thus, to compute an estimate of the variance-covariance matrix of the sam-
pling distribution of the β̂ parameters, the inverse covariance matrix of the
features is needed. However, when the data is vertically partitioned, part of
this covariance matrix is missing for each party. As a result, computing stan-
dard errors using the above information matrix approach is impossible for
vertically partitioned data without sharing the features.

We present a novel approach to compute standard errors of the regression
coefficient through creating a substitute V b of the partner’s data matrix Xb.
This substitute is then used as the partner’s data in the computation of the
asymptotic variance-covariance matrix as in Equation 5.9.

The substitute V b needs to contain the same information for the parameters of
Alice as the real data. This information is in the predictions received from Bob
– the parameter estimates of Alice depend only on Bob’s linear predictions.
Consider the inputs and outputs of Bob, as seen by Alice: as the coordinate
descent algorithm progresses along the R iterations, Alice can create two N ×
R matrices, Êa and Ŷ b

Êa =
[
ϵ̂(1)a , . . . , ϵ̂(R)

a

]
Ŷ b =

[
ŷ
(1)
b , . . . , ŷ

(R)
b

] (5.11)

These are the input and output matrices, respectively, from the projection
that Bob applies in each iteration. This projection is commonly known as the
hat matrix Hb ∈ RN×N . The hat matrix relates to Bob’s data matrix Xb as
follows:

Ŷ b = HbÊa

Ŷ b = Xb(X
T
b Xb)

−1XT
b Êa

Ŷ b = XbX
+
b Êa

(5.12)
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where X+
b indicates the Moore-Penrose generalized inverse of Xb [47].

Alice can compute the projection that Bob applies in each iteration Hb as
follows:

Ĥb = Ŷ bÊ
+

a (5.13)

Across iterations, this minimum-norm solution Ĥb performs the same pro-
jection as the true hat matrix of Bob. Using this projection, Alice can then
create the data substitute V b ∈ RN×Pb . For this, V b should have the property
Ĥb = V bV

+
b . Such a V b has the same effect on the coefficient estimates of

Alice that Xb does, because it generates the same predictions that Bob does:

Ŷ b = ĤbÊa

Ŷ b = V bV
+
b Êa

(5.14)

There is no unique solution to decomposing Ĥb into an N × P matrix V b

and its pseudoinverse. However, a numerically convenient V b solution can
be found as the first Pb eigenvectors of Ĥb. This is a convenient choice, be-
cause the columns of V b are then orthogonal, meaning they also have the
following property: V +

b = (V T
b V b)

−1V T
b = I−1V T

b = V T
b . As follows from

Equations 5.12 and 5.14, the V b matrix relates to Xb by means of an unknown
Pb-dimensional positive definite rotation matrix V b = XbR [48].

By leveraging this similarity of V b to Xb, Alice can create an augmented
data matrix of the following form: Za = [Xa,V b]. The augmented data
matrix replaces the full data matrix in the computation of the asymptotic
covariance matrix: Σ

(a)
β = σ2(ZT

aZa)
−1. The partition of Σ

(a)
β belonging

to βa is then identical to its counterpart from the full data asymptotic
covariance matrix Σβ (for proof see Appendix 5.6). The square root of
its diagonal elements are thus the correct standard errors that would be
obtained had the full data been available.

Alternative standard error procedures are available, e.g., profile likelihood
methods or bootstrapping, but those require additional iterations of the main
block coordinate descent algorithm. This yields additional information leak-
age and dramatically increases time requirements. Conversely, in the novel
procedure we suggest here, both parties efficiently leverage the information
in the existing iterations to compute standard errors without additional com-
munication.
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5.4 Privacy considerations for block coordinate
descent

In this section, we analyze the information transfer within our protocol for
GLM parameter estimation based on block coordinate descent. In line with
previous work on this topic [6, 8, 49, 14, 50, 51], we take the viewpoint of semi-
honest parties: Alice and Bob follow the protocol accurately, though they may
be curious and aim to recover the other party’s data. Here, we identify how
well Bob can approximate Alice’s data using a model inversion attack [52, 53].

Information about features cannot only leak through full dataset sharing, but
also via sharing statistics based on this data. For example, a simple method
for regression without explicitly sharing the full dataset is that by [7], who
compute the covariance matrix of X using secure inner-product methods and
share it between Alice and Bob. This covariance matrix allows even a semi-
honest Alice to (a) know how many features are used by Bob and – in the case
of categorical predictors – know how many categories there are, (b) predict
the values of the features held by Bob based on the values of the features held
by Alice, (c) compute standard errors around this prediction, and (d) compute
an R2 value for this prediction. In other words, in a shared covariance ma-
trix setting Alice can know up to a certain degree the values on each of Bob’s
features for each row in the dataset, and Alice can know how good this pre-
diction is. Moreover, each additional feature entered by Alice improves the
prediction of features at Bob by definition.

Thus, sharing the full covariance matrix is undesirable for privacy-preserving
regression. Newer methods [5, 8] result in additive shares of cov(X) at Alice
and Bob, without either of them possessing the full covariance matrix. After-
wards, separate secure multiparty matrix inversion protocols or linear sys-
tem solvers are used to compute the regression parameters. This generally
requires complex protocols involving multiple parties, where it is clear that
information transfer does occur (because the full-data estimates are obtained)
but its extent is not made explicit: it is unclear how the additive shares of the
covariance matrix (the “statistics”) relate to the collaborator’s data – and thus
it is unclear whether that data can be reconstructed.

Conversely, in our protocol the covariance matrix of the combined data is
never explicitly computed. Our method uses a different “statistic”: predic-
tions ŷ over R iterations. How this information transfer relates to Alice’s data
is thus explicit:

ŷ(r)
a = Xaβ̂

(r)

a (5.15)
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As a result, clear conclusions can be made as to the potential for data recov-
ery. The exposition in section 5.3.5 and equations 5.11 to 5.14 show that the
predictions sent to Alice only contain information about a transformation Rb

of Bob’s data (Xb) such that the parameter estimates and standard errors of
Alice are adequately adjusted (Theorems 1 and 2). Reconstruction of Xb by Al-
ice would require finding the correct Rb, which could be any invertible Pb×Pb

matrix (an infinite number of possibilities). Therefore, we argue that the basic
protocol is secure against reconstruction of the data in the case of semi-honest
parties.

In the special case where Alice enters only a single feature xa in the analysis
protocol, the information contained in ŷa is sufficient for Bob to reproduce the
values of this feature up to a multiplicative constant: ŷa = xa · β̂a. With more
than one feature per party, β̂a becomes a vector, meaning the problem of re-
covering the values of any feature at Alice is underidentified, model inversion
impossible through this route.

Sharing the final parameter estimates – likely to be a goal of the analysis in
the first place – does transfer extra information, which can be combined with
the transferred predictions to approximate the collaborator’s data. We show
empirically in Appendix 2 that this approximation is limited: if Alice shares
the final parameter estimates with Bob, she reveals a proportion 1/Pa of the
variance in Xa.

It is possible to further limit the information shared with the collaborator in
several ways. For example, in each iteration Alice may add noise to the com-
puted parameter estimates or to the predictions sent to Bob – a technique from
the differential privacy literature [54]. Another method is to put an upper
bound on the number of iterations based on the number of features in the
data. This has two effects: (a) it shrinks (regularizes) the parameter estimates
towards the marginal estimates and (b) it creates an upper bound on the in-
formation shared, depending on the allowed number of iterations.

In conclusion, the information transfer between parties is insufficient for
model inversion in the case of semi-honest collaborators. We leave more
in-depth privacy analysis to future research. In the next section, we show
how our implementation of BCD with vertically partitioned data performs
in comparison to full-data generalized linear modeling (GLM) in three
real-world datasets.
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Table 5.1: Properties of the datasets used from the UCI machine learning repository after
dataset cleaning and pre-processing. Reg represents Regression, Clf represents Classification

in the table.
Dataset Features Instances Task Parties
Forest fire 13 517 Reg Weather & Fire dept.
HCC 49 165 Clf Lab & Clinic
Diabetes 43 15 000 Clf Clinic & Pharmacy

5.5 Experiments
Our implementation of the BCD algorithm for vertically partitioned data is
provided as an R package in the supplementary materials. In this section,
we compare this implementation (version 0.9.5) to standard GLM methods
on three real-world datasets with multiple parties from the UCI (University
of California at Irvine) Machine Learning repository [13]. The datasets were
chosen because they can be naturally partitioned into two sources, and their
size and targets are different (Table 5.1). The full preprocessing and analysis
code for this section is available in the supplementary materials. Analyses
were run on two separate computers (an Intel Core i7-8750H at 2.20 GHz
and an Intel Xeon E5-2650 v4 at 2.20GHz) connected via a gigabit Ethernet
connection on a university network.

5.5.1 Forest fires data
The forest fire data comes from the Montesinho natural park in Portugal [55].
It contains several weather observations by a meteorological station (e.g.
wind speed, temperature, relative humidity, etc) as well as fire department
risk assessments. The target is to predict the area of forest burned by a
particular fire using the features from the aforementioned parties.

We performed linear regression where the target was log-transformed to
normalize the residuals. Continuous features were standardized before they
were entered into the analysis. The analysis took 450 BCD iterations in the
privacy-preserving regression case. Including encryption and networking
overhead, estimation took 14.51 seconds and computing standard errors
took 0.61 seconds. The coefficients of the full-data analysis and the
privacy-preserving procedure are exactly equal (Figure 5.2), the model’s
performances are equal (MSE = 11.7375), and the standard errors exhibit
only very small differences (mean absolute bias of 0.2%). Several months
show a significant positive effect on the log-area, meaning that fires in these
months (e.g., August and December) burn larger areas of forest – conditional
on the ratings of the fire department.
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Figure 5.2: The coefficients for the forest fire analysis are exactly the same for the GLM and
our privacy-preserving regression estimation methods, and the standard errors exhibit very
small differences (mean absolute bias of 0.2%). The shading indicates data partitioning into

the weather service (light) and fire department (dark).

5.5.2 Hepatocellular carcinoma data
This dataset was collected by Coimbras Hospital and University Centre in
Portugal for studying an epithelial cell cancer of the liver called hepatocellu-
lar carcinoma (HCC) [56]. It contains heterogeneous data on demographics,
risk factors, laboratory and overall survival features from HCC patients. The
goal of the analysis is to use lab results for a tissue sample as well as clinical
data for the patient to predict survival after diagnosis.

Since survival is a binary target, a binomial family GLM (logistic regression)
was performed. For this analysis, continuous features were standardized
before the analysis, which improved the convergence characteristics. The
privacy-preserving GLM converged in 1636 iterations. Including encryption
and networking overhead, estimation took 3 minutes and 16 seconds and
computing standard errors took 0.63 seconds. The results of the analysis
(Figure 5.3) show that the estimates are exactly equal across the full-data and
the privacy-preserving analyses, meaning survival probability predictions for
new incoming patients based on these models will be the same, hence the
model’s performances are identical (AUC = 0.9590725). Despite slight devi-
ations in the width of the confidence intervals (mean absolute bias of 5.8%),
conclusions about the effects of the features on survival are also the same in
this dataset.

5.5.3 Diabetes
The diabetes dataset is an extract representing 10 years (1999-2008) of clinical
diabetes care at 130 hospitals and integrated delivery networks throughout
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Figure 5.3: The coefficients for the carcinoma analysis are exactly the same for the GLM and
our privacy-preserving regression estimation methods, and the standard errors exhibit small
differences (mean absolute bias of 5.8%). The shading indicates data partitioning into the lab

results (light) and clinic (dark).

the United States [57]. It is a large and also heterogeneous data set includ-
ing encounter data (emergency, outpatient, and inpatient), provider special-
ity, demographics, laboratory data, pharmacy data, in-hospital mortality, and
hospital characteristics. In this dataset, we predict readmission to the hospital
using both administrative features and pharmaceutical features. To keep the
computation of the standard errors for this analysis possible, 15000 patients
were randomly selected from the dataset. Features were re-coded where nec-
essary, and categorical features with only a single category in the sample were
excluded from the analysis.

Since readmission is a binary target, a binomial family GLM (logistic regres-
sion) was performed. The diabetes data analysis required 284 iterations of the
BCD algorithm. Including encryption and networking overhead, estimation
took 1 minute and 37 seconds and computing standard errors took 42 sec-
onds. The coefficients for the diabetes analysis are exactly the same for stan-
dard GLM and our privacy-preserving regression estimation methods (Figure
5.4), the model’s performance is identical in both cases (AUC = 0.6510909),
and the standard errors exhibit very small differences (mean absolute bias of
0.5%). This analysis is particularly interesting with respect to the effect of in-
sulin (insulinYes) on the readmission probability. In the analysis of only
the medication data, insulin has a significant positive effect on readmission
(OR = 1.20, p < .001), whereas conditional on the administrative data, insulin
significantly reduces the readmission probability (OR = 0.88, p < .001). This
is a strong argument for including the data of both parties in the analysis.

In this section, we have shown that our approach is a viable implementation
of GLM for analyzing data with varied characteristics. The time constraints
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Figure 5.4: The coefficients for the diabetes analysis are exactly the same for the GLM and our
privacy-preserving regression estimation methods, and the standard errors exhibit very small

differences (mean absolute bias of 0.5%). The shading indicates data partitioning into the
clinical data (light) and pharmaceutical data (dark).

on the real-world analyses are manageable, with all example analyses con-
verging in under 4 minutes. We have shown that the parameter estimates
exactly match those of the existing reference methods, and that our novel es-
timation method for the standard errors generally agrees with its full-data
counterpart – and where it did not the difference was so small that it lead to
the same conclusions in the analysis.

To further validate our procedure, we have performed Monte-Carlo simu-
lations (available as part of the supplementary materials) to compare our
method with the full-data solutions. This shows that our implementation’s
bias in the parameter estimates is almost exactly 0, and its bias in the standard
errors is within 0.5% with P = 10, increasing slightly to a 95th percentile of
around 3% when P = 200.

5.6 Discussion
In this paper, we have argued that block coordinate descent is a general
method for estimating conditional parts of a generalized linear model
(GLM) in a vertically partitioned data situation. Using this approach, two or
more data parties can collaboratively estimate a GLM without sharing their
features. This is useful when the features are not allowed to be shared, for
example when there are privacy issues.

Our method falls within the category of federated learning algorithms. This
means it can be implemented for situations when data mining is to be per-
formed over remote devices or siloed data centers [24], where aggregating
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the data tables is prohibitively expensive in terms of time, computation, or
storage costs. This work aligns with several recent contributions that seek to
exploit the privacy-preserving aspects of federated learning algorithms [see,
e.g., 58, 59].

Due to the accessibility of our protocol and its similarity to existing regression
estimation methods, extensions are relatively simple to implement. First and
foremost, our framework can be extended to multiple parties as coordinate
descent naturally extends to multiple blocks (see, for example, Appendix 5.6).
In addition, our algorithm could include penalties for regularized estimation
of the regression parameters through thresholding [40]. Through further re-
search into combining coordinate descent with missing data methods such
as full information maximum likelihood [60], our protocol could even be ex-
tended for a hybrid partitioning situation where data is both horizontally and
vertically partitioned.

Our novel approach is a natural modification of the familiar linear modeling
framework – without changes in the assumptions. We argue that our proto-
col restricts statistical information sharing as much as possible, while being
explicit in how the shared information relates to the original data. Because
of this, data parties know how much information they share, and the proto-
col could even incorporate methods from the differential privacy literature –
such as additive noise or early stopping – to put a restriction on the amount
of information shared with the partner institution [54].

The main tradeoff of this flexibility compared to existing methods is rela-
tively high communication cost: each iteration requires N prediction values
to be sent to the partner institution. In addition, like other methods for this
situation the block coordinate descent assumes (probabilistic) linkage of the
individual records – both parties need to have their records in the same order.
Lastly, this method is possible only when the target can be shared, although
in absence of a shareable target collaborators could still perform some form
of transfer learning, e.g., by predicting a shareable feature related to the true
target.

Considering the prospect of these extensions and the availability of an acces-
sible open-source implementation, we believe the proposed block coordinate
descent protocol can be a springboard for future developments in the privacy-
preserving distributed data mining field.
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Supplementary
Proof for recovery of parameter estimates and standard errors
Let X ∈ RN×P be a full-rank data matrix with Pa columns Xa held by Alice
and Pb columns Xb held by Bob such that Pa + Pb = P . Let A = XTX , a
symmetric positive definite matrix partitioned into four blocks A11 ∈ RPa×Pa

(held by Alice), A22 ∈ RPb×Pb (held by Bob), and A12 ∈ RPa×Pb and A21 ∈
RPb×Pa (unknown to either). Let B = A−1 be partitioned in the same way
into B11 ∈ RPa×Pa , B22 ∈ RPb×Pb , B12 ∈ RPa×Pb , and B21 ∈ RPb×Pa .

Following the procedure outlined in Section 5.3.5, Alice replaces XB with Vb =
XbRb, where Rb is an invertible matrix unknown to Alice. This gives a new
data matrix, Za = [Xa, Vb], and a new cross-product matrix A(a) = ZT

a Za, and
its inverse, B(a) = (ZT

a Za)
−1.

Alice needs to compute B11 to obtain the asymptotic covariance matrix
(ACOV) of her regression parameters β̂a.

Theorem 1. B11 can be obtained by Alice by replacing Xb with a transformed ver-
sion Vb = XbRb. Specifically, B(a)

11 = B11.

Proof. The inverse of the partitioned, positive definite symmetric matrix A is

A−1 =

(
B11 B12

B21 B22

)
=( (

A11 − A12A
−1
22 AT

12

)−1
−A

−1
11 A12

(
A22 − AT

12A
−1
11 A12

)−1

−A
−1
22 AT

12

(
A11 − A12A

−1
22 AT

12

)−1 (
A22 − AT

12A
−1
11 A12

)−1

) (.16)

Following A(a) = ZT
a Za, note that

A
(a)
12 = XT

a XbRb

A
(a)
22 = RT

b X
T
b XbRb

(.17)
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So that

B
(a)
11 =

(
A

(a)
11 −A

(a)
12 (A

(a)
22 )−1(A

(a)
12 )T

)−1

=
(
(XT

a Xa)− (XT
a XbRb)(R

T
b XT

b XbRb)
−1(XT

a XbRb)
T
)−1

=
(
(XT

a Xa)−XT
a XbRbR

−1
b (XT

b Xb)
−1R−T

b RT
b Xt

bXa

)−1

=
(
A11 −A12A

−1
22 AT

12

)−1

= B11

(.18)

This shows that even if Rb is unknown to Alice, the part of the ACOV to
do with β̂a can be estimated correctly, and therefore the standard errors are
available: ACOV(β̂a) = σ2B11.

Theorem 2. The parameter estimates created by Alice β̂
(a)
a are equal to their full-

data counterparts β̂a when replacing Xb with a transformed version Vb = XbRb.

Proof. Following the same setup of Theorem 1, note that

B
(a)
21 = −(A(a)

22 )
−1(A

(a)
12 )

TB
(a)
11

= −(RT
b X

T
b XbRb)

−1(XT
a XbRb)

TB11

= −R−1
b (XT

b Xb)
−1R−T

b RT
b X

t
bXaB11

= −R−1
b A−1

22 A
T
12B11

= R−1
b B21

(.19)

Note that, for Alice:

(
β̂
(a)
a

β̂
(a)
b

)
=

(
B

(a)
11 B

(a)
12

B
(a)
21 B

(a)
22

)(
XT

a y
(XbRb)

T y

)
(.20)

Following this, for the parameter estimates belonging to the variables held by
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Alice:

β̂(a)
a = B

(a)
11 XT

a y +B
(a)T
21 (XbRb)

T y

= B11X
T
a y + (R−1

b B21)
T (XbRb)

T y

= B11X
T
a y +BT

21R
−T
b RT

b X
T
b y

= B11X
T
a y +BT

21X
T
b y

= β̂a

(.21)

This shows that even if Rb is unknown to Alice, the parameters βa can be
estimated correctly.

Theorem 3. If Rb is unknown to Alice, then Bob’s regression parameters β̂b are
unavailable to her when replacing Xb with a transformed version Vb = XbRb.

Proof. Following the same setup of Theorem 1, note that

B
(a)
22 = RT

b X
T
b XbRb −RT

b X
T
b Xa(X

T
a Xa)

−1XT
a XbRb

= RT
b B22Rb

(.22)

Then, following the partitioning of Theorem 2, but focusing on the estimates
for Bob’s data:

β̂
(a)
b = B

(a)
21 XT

a y +B
(a)
22 (XbRb)

T y

= R−1
b B21X

T
a y +RT

b B22RbR
T
b X

T
b y

= RT
b B21X

T
a y +RT

b B22X
T
b y

= RT
b β̂b

(.23)

Theorem 4. If Rb is unknown to Alice, then the ACOV of the full parameter vector
β̂ = (β̂a, β̂b) is unavailable to her when replacing Xb with a transformed version
Vb = XbRb.
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Proof. Remember that ACOV (β̂) = σ2B. Following Theorems 1 to 3, note
that

(ZT
a Za)

−1 =

(
B

(a)
11 B

(a)
12

B
(a)
21 B

(a)
22

)
=

(
B11 B12Rb

RT
b B21 RT

b B22Rb

)
(.24)

By symmetry, the proofs for Theorems 1, 2, 3, and 4 can be given for Bob in
the same way.

MSE of rank-R data approximation
The goal of this appendix is to show empirically the amount of explained
variance when a set of parameters and their associated predictions are shared
with another party. From Equation 5.15, but assuming all in-between param-

eter estimates β̂
(r)

a are shared, Bob can create the following approximation:

Ŷ a = XaB̂a

X̂a = Ŷ aB̂
+

a

(.25)

where Ŷ a ∈ RN×R, Ba ∈ RP×R, Xa ∈ RN×P , all matrices are full rank,
and A+ indicates the Moore-Penrose pseudoinverse of A. For simplicity, but
without loss of generality, we assume here that the variance of all the features
in Xa is the same, σ2

a, and these features are uncorrelated.

The relation between P , R, and the accuracy of the approximation X̂a is as
follows: as R → P , the MSE improves linearly, with perfect approximation
being achieved when R = P . As mentioned in-text, when P = 1, sharing one
set of parameters (R = 1) means the data can be recovered completely. Em-
pirical simulations show that the relation between R, P , and expected mean
square error of approximation is MSE = σ2

a(1−R/P ), where σ2
a is the variance

of the features in Xa (see Figure .5).

Phrasing the above in terms of information sharing and privacy preservation:

in sharing R sets of parameter estimates β̂
(r)

a with their associated predictions
ŷ(r)
a , Alice reveals a proportion of at least R/P of variance in the data. This

proportion is a lower bound: in case there are correlations among the features
of Alice, this proportion increases. When R = P the data of Alice can be
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Figure .5: Mean square error (MSE) of the approximation of the data Xa at Alice by Bob if
B̂a is known. Xa was simulated as having P = 20 uncorrelated features with variance
σ2
a = 2. Note that the approximation linearly improves as the rank of B̂a increases, with a

perfect approximation reached when R = P . Dashed line indicates expected MSE, using the
formula E[MSE] = σ2

a(1−R/P ).

reconstructed by Bob. When either of a pair (β̂
(r)

a , ŷ(r)
a ) are shared but not the

other, no information is revealed.

Extension of distributed algorithm to multiple parties
The distributed estimation algorithm can be readily extended to multiple par-
ties. This appendix describes an extension for linear regression. It can sub-
sequently be further extended to generalized linear models in the same way
as the two-party algorithm (Section 5.3.4). One possible multiparty extension
is to update and transfer a running linear prediction ŷ in a circular way. For
three parties (Alice, Bob, and Carol) the algorithm is as follows:
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Algorithm 3: Secure block coordinate descent with three
parties

1. Initialize ŷ ← 0

2. Initialize ŷa, ŷb, ŷc ← 0

3. Alice:

a) ŷ-a ← ŷ − ŷa

b) ϵ̂-a ← y − ŷ-a

c) β̂a ← (XT
aXa)

−1XT
a ϵ̂-a

d) ŷa ←Xaβ̂a

e) ŷ ← ŷ-a + ŷa

f) Send ŷ to Bob

4. Bob:

a) ŷ-b ← ŷ − ŷb

b) ϵ̂-b ← y − ŷ-b

c) β̂b ← (XT
b Xb)

−1XT
b ϵ̂-b

d) ŷb ←Xbβ̂b

e) ŷ ← ŷ-b + ŷb

f) Send ŷ to Carol

5. Carol:

a) ŷ-c ← ŷ − ŷc

b) ϵ̂-c ← y − ŷ-c

c) β̂c ← (XT
c Xc)

−1XT
c ϵ̂-c

d) ŷc ←Xcβ̂c

e) ŷ ← ŷ-c + ŷc

f) Send ŷ to Alice

6. Repeat step (3.), (4.), and (5.) for R iterations until con-
vergence.
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6
Generating Synthetic Tabular Data

using Conditional GANs combining
with Differential Privacy

Chang Sun, Johan van Soest, and Michel Dumontier. ”Improving Correla-
tion Capture in Generating Imbalanced Data using Differentially Private Con-
ditional GANs”. Submitted to Information Sciences. (2022) DOI (pre-print):
10.48550/arXiv.2206.13787
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Abstract
A large amount of personal data that is highly valuable for the scientific com-
munity is still not accessible or requires a lengthy request process because of
privacy concerns and legal restrictions. As a solution, synthetic data has been
studied and proposed to be a promising alternative to this issue. But, generat-
ing realistic and privacy-preserving synthetic data still retains challenges. In
this paper, we propose DP-CGANS, a conditional GAN model combining dif-
ferential privacy to generate synthetic tabular data. DP-CGANS framework
consists of four components including transformation, sampling, condition-
ing, and networking training with differential privacy to generate realistic
and privacy-preserving synthetic data. DP-CGANS distinguishes categori-
cal and continuous variables and maps them into latent space using differ-
ent transformations. We structure a conditional vector as an additional in-
put to not only presents the minority class in the imbalanced data, but also
capture the dependency between variables. Moreover, we handle the model
collapse to ensure the generator creates diverse and representative synthetic
data points. To prevent the synthetic data from leaking any sensitive informa-
tion from the source data, we apply differential privacy by injecting designed
statistical noise to the gradients in the training process of DP-CGANSto pro-
vide a differential privacy guarantee. We extensively evaluate our model
with state-of-the-art generative models on three public datasets and two real-
world personal health datasets in terms of the statistical similarity, machine
learning performance, and privacy measurement. We demonstrate that our
model outperforms other comparable models, especially in capturing depen-
dency between variables. Finally, we present the balance between data utility
and privacy in synthetic data generation considering the different data struc-
ture and characteristics of real-world datasets such as imbalance variables,
abnormal distributions, and sparsity of data.
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6.1 Introduction
Data from individuals such as personal health or behavior data have proven
to be highly valuable for health research such as enhancing our understand-
ing of disease and delivering high-quality patient-centered care [1, 2]. This
data is sensitive and requires special attention and protection. Due to disclo-
sure limitations and legal requirements, such data is not always accessible for
the scientific community [3, 4, 5]. Even if some data is accessible by request,
researchers need to invest enormous time and effort in the requesting process.
To comply with the legal and organizational regulations, researchers are re-
quired to prepare lengthy documentation describing the research questions,
specify the data subjects and variables, illustrate a detailed analysis plan to
prove the necessity of the request with strong evidence [6, 7, 8]. Access to this
data may take months or years without knowing if the data is sufficiently
useful for the research studies. This can cause a severe delay and inordinate
costs for research projects [9, 10]. Early access to samples of data is useful
in the exploratory research phase to determine the usability of the data for
answering specific research questions.

Personal data may be distributed and held by multiple parties. Sharing and
analyzing this data among multiple parties holds the potential for new in-
sights and a wide variety of applications [11, 12]. State-of-the-art technologies
to analyze distributed data such as Federated Learning (e.g., Personal Health
Train [13], Privacy-Preserving Federated Neural Network Learning [14]) or
Swarm Learning [15]) have two core concepts - 1) keep original data with the
data owner, 2) construct machine learning models at each data party. How-
ever, in practice, these infrastructures remain challenges such as low data
interoperability, inconsistent data standards, and uneven data quality from
different data parties. For example, since the source data is unrevealed, the
coverage or relevance of the data from each party, the completeness and sys-
tematic errors of each variable are unknown. These challenges hinder re-
searchers from constructing accurate and reliable machine learning models
using these infrastructures [16, 17, 18].

One approach to eliminate direct learning from personal data is to use syn-
thetic data. In this study, synthetic data is defined as the generated data
which is structurally and statistically similar to real data at the population
level (i.e., distributions of single variables, correlations between variables),
and machine learning utility level (i.e., the analysis results on synthetic data
are comparable to the results on real data). An example is that data parties
provide researchers with realistic synthetic data to construct machine learn-
ing models. Afterwards, the built models are sent to data parties to be exe-
cuted on the source data and only return the results to the researchers. The re-
alistic synthetic data offers the possibility for researchers to i) assess whether
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the data are relevant for their studies and ii) obtain statistically valid insights
without access to the underlying data or before starting the data requesting
process. To protect the privacy of the source data, the synthetic data should
offer strong privacy guarantees to prevent adversaries from extracting any
sensitive information about the source data [6, 7].

In this paper, we propose a DP-CGANS framework (Differentially
Private - Conditional Generative Adversarial NetworkS), consisting of
four components including transformation, sampling, conditioning, and
networking training with differential privacy, to generate realistic and
privacy-preserving synthetic data. DP-CGANS constructs conditional
vectors and an extra penalty to enforce the generator to captures the
under-represented classes in the imbalanced variables and simulate the
correlations and dependencies between these imbalanced variables. To
motivate the model to generate diverse and representative synthetic data,
we apply Wasserstein distances with gradient penalty and then group
the training samples to the discriminator. Finally, we provide a privacy
guarantee through a differential privacy approach that injects Gaussian
noise to the penalty gradients in the training process. Under a certain
differential privacy threshold, DP-CGANS prevents the synthetic data from
leaking sensitive information originating in the source data. We conduct
experiments on three public datasets and two real-life personal health
data comparing with the other three state-of-the-art generative models.
The performance is evaluated on statistical similarity, machine learning
performance, and privacy risks in attribute and identity disclosure under
varying differential privacy budgets. Results indicate that DP-CGANS
outperforms other comparable models for most datasets and captures the
most dependencies between imbalanced variables. We observe the offer a
trade-off between data utility and privacy in synthetic data generation.

We summarize the following key contributions of this study:

• We present a comprehensive summary of existing challenges and pre-
vious work on generating synthetic data using a variety of GAN frame-
works;

• We propose a GAN-based framework to generate realistic and privacy-
preserving synthetic tabular data consisting of four components includ-
ing transformation, sampling, conditioning, and networking training
with differential privacy;

• We add a conditional vector and an extra penalty to the generator and
apply Wasserstein GAN with gradient penalty to the discriminator to
address imbalanced variables issues and to capture correlations and de-
pendencies between variables;
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• We deploy differential privacy techniques in the training process of the
discriminator of DP-CGANS by carefully adding Gaussian noise to the
penalty gradients;

• We evaluate the performance of DP-CGANS on three baseline datasets
and two real-life datasets by measuring the statistical similarity, ma-
chine learning performance, and privacy.

This paper is structured as follows: Section 6.2 describes background knowl-
edge on conditional GANs and differential privacy, followed by the state-of-
art methods. Section 6.3 elaborates on our proposed methods and supporting
theories. Section 6.4 presents a set of experiments and results on five datasets,
followed by findings and discussion in Section 6.5. Finally, we conclude the
study in section 6.6.

6.2 Background
Generative Adversarial Network (GAN) contains two neural networks - a
generator and a discriminator competing with each other. The generator aims
to create realistic synthetic data points that cannot be indistinguished by the
discriminator, while the discriminator is trained to accurately classify real and
synthetic data created by the generator. A number of GAN frameworks have
been successfully developed to generate synthetic image, text, music, health
and financial data with promising performance [19, 20, 21, 22, 23]. How-
ever, using GANs to generate tabular data poses exclusive challenges such
as modeling data with mixed types (categorical and continuous), preventing
model collapse, handling imbalanced variables, and capture the dependen-
cies among variables [24, 25, 26]. Several variants of GANs have been pro-
posed to overcome these challenges [6]. MedGAN [27] transforms the binary
and discrete variables to a continuous space by combining an auto-encoder
with a GAN. MedGAN is one of the earliest GAN variants to generate syn-
thetic Electronic Health Records. It handles binary and continuous variables
in separate models but not multi-categorical variables. TableGAN [28] adds
a third neural network as a classifier in addition to the generator and the dis-
criminator to increase the semantic integrity of the synthetic data. TableGAN
has good performance on handling discrete and continuous variables but suf-
fers from model collapse with categorical data.

6.2.1 Handling Mode Collapse
Model collapse occurs when the generator discovers some data points that
are classified as real data by the discriminator with high confidence and then
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replicates them to all the data points. In this case, the discriminator fails to
provide useful gradients to the generator anymore. To address this challenge,
Martin et al. [29] proposed a WGAN which used Wasserstein distance to mea-
sure the minimal cost of transforming random data points from an arbitrary
distribution into the other target distribution. Further, Ishaan et al. [30] in-
troduced a gradient penalty to penalize the discriminator, called WGAN-GP,
which stabilized WGAN training and better-prevented vanishing gradients.
In addition to WGANs which adjust the objective functions, PacGAN [31] re-
structures the discriminator from mapping one data sample to a class (real or
synthetic) to mapping a set of independent samples to a class. The packed
discriminator can effectively detect mode collapse when there is a lack of
diversity in a set of data samples. The objective function of WGAN-GP is
constructed as equation 6.1. The coefficient λ is defined as the weight of gra-
dient penalty term in the training. Px̂ is the distribution uniformly sampled
between the real (Pr) and generator model distribution (Pg).

L = Ex̃∼Pg
[D(x̃)]− Ex∼Pr [D(x)]︸ ︷︷ ︸

WGANLoss

+λEx̂∼Px̂
[(∥ ▽x̂D(x̂) ∥2 −1)2]︸ ︷︷ ︸
GradientPenalty

(6.1)

6.2.2 Handling Imbalanced Data
When generating imbalanced data, the major category is likely to dominate
the training of the discriminator so that the discriminator fails to detect the
absence of the minor category. Conditional GAN (CGAN) append an addi-
tional vector to the input of the generator and discriminator to address this
concern. Engelmann and Lessmann [32] proposed CW-GAN, a CGAN us-
ing the WGAN-GP objective function, as an oversampling method for imbal-
anced datasets with both continuous and categorical variables. With a similar
goal, CTGAN [24] invents a training-by-sampling method to handle imbal-
anced categorical variables in addition to the conditional vector. Based on
CTGAN and TableGAN, CTAB-GAN [26] combines two frameworks to solve
the challenges in industrial datasets such as variables with mixed data types
and long-tail distributions.

6.2.3 Handling Privacy Concerns
GANs could elicit privacy concerns when the training data is personal and/or
sensitive [33, 34]. To protect the source data from malicious privacy attacks,
recent work shows the promising application of combining Differential Pri-
vacy (DP) into GANs [35, 36, 37]. DP uses a solid mathematical formulation
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to measure the privacy and provide theoretical privacy guarantees by typi-
cally adding noise when training the models [38, 39]. A model is considered
to be (ε, δ) - differentially private if for any two datasets D and D′ differing
in a single data point and for any subset of outputs S:

P(Mp(D) ∈ S) ⩽ eε · P(Mp(D′) ∈ S) + δ (6.2)

where Mp(D) and Mp(D
′) are the outputs of the model for input datasets

D and D′, P is the randomness of the noise, ε reflects the privacy level. A
small ε (⩽ 1.0) indicates the small difference of model’s output probabilities
on D and D′ which results in a high privacy guarantee. Differential privacy
can protect the participation of individual data points in the datasets, which
means replacing or removing one data point (data instance) with another one
will not make an observable change in the analysis results. Xie et al. [37]
added noise on the gradient of Wasserstein distance during the discriminator
training, while Chen et al. [40] uses WGAN-GP framework and inject noises
in the generator training. However, both models were designed and experi-
mented on image data.

6.2.4 Remaining challenges
Based on these recent studies working on GANs for tabular data, there re-
mains challenges in generating more realistic synthetic data from imbalanced
categorical variables [24, 26]. One challenge is that the correlations and de-
pendencies among imbalanced variables are typically not well-preserved in
the generated synthetic data. It is crucial to transfer such information from
real data to synthetic data in many domains such as healthcare and social
sciences. For instance, we would expect the preservation of a positive rela-
tionship between daily physical activity and mobility in synthetically gener-
ated health data. Another challenge in working with personal data lies in
the possibility of using GANs to security attacks that accurately reveal miss-
ing characteristics of real individuals, which could compromise their privacy
[41, 42, 43]. Optimizing the trade-off between the privacy of the source data
and the quality of the synthetic data remains an open challenge.

6.3 Method
We propose DP-CGANS, which generates tabular synthetic data with contin-
uous and categorical variables. DP-CGANS appends conditional vectors to
both the generator and discriminator in a combination of a differential pri-
vacy technique. The development of DP-CGANS is based on the strengths
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of prior studies including [44, 24, 37] and further extended to address the re-
maining challenges, including better handling imbalanced categorical vari-
ables and capturing the correlations and dependencies between variables.
This section will elaborate the structure of the DP-CGANS framework cov-
ering the transformation of variables, the construction of the conditional vec-
tor, sampling imbalanced variables for training, network training method,
and applied differential privacy in DP-CGANS to protect the input data.

6.3.1 DP-CGANS Framework
The overall framework of DP-CGANS is illustrated in Figure 6.1 including
four main steps which are transformation, sampling, conditioning, and train-
ing. DP-CGANS separates input data to categorical and continuous variables
to apply different transformation methods and activation functions. Categor-
ical variables are encoded using one-hot encoding method, while continuous
variables are transformed using mode-specific normalization proposed by Xu
et al. [24]. In real-world datasets, continuous variables commonly have mul-
timode distribution such as heights of males and females. Instead of forcing
the values of continuous variables to [-1, 1] using a min-max transformation,
mode-specific normalization estimates the number of the distributions of con-
tinuous variables by a variational Gaussian mixture model with Dirichlet Pro-
cess. The values of each continuous variable are normalized according to its
estimated distributions. After training, the synthetic data produced by the
generator is inversely transformed to the original scales.

Figure 6.1: The overall structure of DP-CGANSFramework

6.3.2 Conditional vectors and data samples for training
The key process in DP-CGANS to capture the dependencies between imbal-
anced variables is sampling and conditioning. Our method is leveraged from
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the training-by-sampling method and the design of the conditional generator
in [24]. The primary idea is to encode the values of each categorical vari-
able and present them as an additional conditional vector to train the gener-
ator and discriminator. The input training data is resampled based on this
conditional vector to ensure the minority categories can also be observed in
training.

However, the existing approach and its variants [26, 45] treat each variable in-
dependently, thereby potentially losing the dependencies between variables
in the synthetic data. DP-CGANS addresses this issue by conditioning the
generator with an extensive vector representing the dependencies between
variables. Figure 6.2 shows the construction of the conditional vectors in DP-
CGANS. After transformation, each value in the categorical variables is en-
coded into a one-hot vector. For each row in the sampled data, we randomly
select and pair two categorical variables with equal probability. In the ex-
ample, they are variables of Sex and Diabetes. Then, the probability mass
of every possible combination of categorical values is calculated from these
two variables and one pair out of all possible combinations is sampled. The
sampled values are Female and No diabetes and are represented as 01 100 in
the example. The occurrence of two rare categorical values is relatively low
and difficult to capture in this case. The sampling is based on the logarithm
of the probability which increases the chance of picking up the dependency
between two rare categorical values.

Figure 6.2: Construction of the conditional vector and generator training.

143



Chapter 6. Generating Synthetic Tabular Data using Conditional GANs
combining with Differential Privacy

Figure 6.3: Network Structure of the generator and the discriminator.

6.3.3 Network structure and training method
Figure 6.3 illustrates the network structures of the generator and the discrimi-
nator of DP-CGANS. The generator uses a fully connected network with two
hidden layers. Each hidden layer applies the batch-normalization and Relu
activation function for efficiency and stability purposes to address the van-
ishing gradient and data sparse problems. To generate the mix of categorical
and continuous features, tanh and softmax activation functions are applied on
the output layer [46].

The generator is trained to produce more realistic synthetic data by learning
the loss based on the discriminator’s classification of the real and synthetic
data. Figure 6.2 shows the generator training process in DP-CGANS. In ad-
dition to learning from the loss output from the discriminator, the generator
takes an extra penalty to present the variables and values which are sampled
in the conditional vector (Ĉ) and to maximally mimic the conditional vector
from the real data (C). As the conditional vector includes multiple variables to
capture their dependency, we introduced a Binary Cross-Entropy Loss com-
bined with a Sigmoid layer to penalize the generator loss in DP-CGANS.

The discriminator is a fully connected network with two hidden layers. The
hidden layers apply Leaky Relu functions which can handle negative in-
put values and has better performance than Relu in the discriminator and
dropout on each layer [47, 48]. To mitigate mode collapse, the discriminator
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is constructed following the PacGAN framework, which is an augmented dis-
criminator mapping 10 samples to a single class. DP-CGANS applies the ob-
jective function in equation (3) following the WGAN-GP (Wasserstein GAN
with gradient penalty) structure with gradient penalty coefficient 10. The
more the discriminator is trained, the more useful gradient of the Wasserstein
will be obtained. We run 5 iterations of the discriminator in each generator it-
eration. Lastly, the discriminator and generator both use Adam optimization
with learning rate (α) 1 × 10−4, the exponential decay rate for the first and
second moment estimates (β1, β2) 0.5 and 0.99.

6.3.4 Differential Privacy in DP-CGANS
DP-CGANS takes real data as input to train the discriminator. To protect these
data, we inject Gaussian noise to the penalty gradient of the Wasserstein dis-
tance while training the discriminator [37]. A post-processing property of dif-
ferential privacy has been shown that operations after a differentially private
output will not violate the privacy [49]. Therefore, privatizing the discrim-
inator can impose the generator to become differentially private in that the
generator is trained based on the differentially private discriminator’s out-
put [33, 37].

In each iteration, the discriminator calculates the gradients of loss to opti-
mize its training objective. We clip the gradients to [−Cp, +Cp ] where Cp is
the parameter clip constant and inject Gaussian noise (N(0, σ2(Cg)

2I)) to the
clipped gradient where σ is the noise scale, Cg is the bound on the gradient of
Wasserstein distance. To monitor the spent privacy budget (ε, δ), the model
tracks and checks the privacy budget every time the noise is added to the
gradient. Different from existing methods using moment accountant tech-
nique, we applied Rényi Differential Privacy (RDP) Accountant [39] which
calculates a tighter estimation of privacy budget. At every iteration step, the
privacy budget is bounded and accumulated. When the total privacy budget
exceeds the initial target, the training process will be terminated and DP-
CGANS is able to generate differentially private synthetic data.

6.4 Experiments and results
The experiment includes three public datasets that are commonly used by the
machine learning community from UCI Machine Learning Repository [50]
and two real-world personal health datasets (Table 6.1). All datasets con-
tain multiple data types continuous, binary, and categorical. The Adult
dataset [51] and Census dataset [52] contain socio-economic data from in-
dividuals, while Census has a majority of categorical variables. Intrusion
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Table 6.1: Description of experimented datasets. #Cat represents the number of multi-class
categorical variables, #Con represents the number of continuous variables, and #Bi represents

the number of binary variables in the datasets.
Datasets #Rows #Cat #Con #Bi Source Access
Adult 30162 7 6 2 UCI Public
Census 12000 31 7 3 UCI Public
Intrusion 123000 4 20 0 UCI Public
Diabetes 2257 8 10 6 DMS On request
Cancer 365 5 2 2 Maastro On request

dataset [53] is about network intrusion detections with most continuous vari-
ables. To reduce the computation time, 12k rows and 123k rows of data were
randomly sampled from Census and Intrusion datasets in a stratified way
with respect to the target variables. The Diabete dataset is requested from
the Maastricht Study, an observational prospective population-based cohort
study focusing on Type 2 Diabetes [54]. The diabetes dataset includes de-
mographic, socioeconomic, lifestyle, T2DM data of individuals. The cancer
dataset is the clinical outcome data of non-small cell lung cancer (NSCLC)
patients collected by the Maastro Clinic [55, 56].

6.4.1 Experiment Setting
We compared the performance of DP-CGANS with other three well-known
GAN frameworks for generating tabular data - CTGAN [24], MedGAN [27],
and TableGAN [28]. We applied the comprehensive benchmarking suite de-
veloped by Synthetic Data Gym Framework1 where all these models were
programmed in python using PyTorch library. We keep the original structure
of their framework and use the same model parameters as they stated in their
published studies. All models share the same number of epochs (2000) and
batch size (500). We present the key hyperparameters of DP-CGANS for re-
producibility purposes in Table 6.2. The experiments were conducted using
one 32GB GPU (Nvidia DGX1 8x Tesla V100) in an OKD 4.6 cluster under the
Data Science Research Infrastructure (DSRI) at Maastricht University2.

6.4.2 Evaluation Matrics
A set of metrics are applied to comprehensively evaluate the performance
of DP-CGANS and compared with other state-of-the-art models. The met-
rics are grouped to test the data utility of the synthetic data and measure the
privacy cost of the generative model. The data utility metrics measure the

1SDGym Github Repository: https://github.com/sdv-dev/SDGym
2DSRI: https://maastrichtu-ids.github.io/dsri-documentation/
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Table 6.2: Key hyperparameters in DP-CGANS. The discriminator step represents the
number of updates (iterations) of the discriminator per generator update.

Step Model Hyperparameter Value

Transfor-
mation

Gaussian
Mixture

Prior type for the weights’ distribution Dirichlet Process
Max. num of Gaussian distribution 10
Weight concentration prior 1× 10−3

Weight threshold 1× 10−3

Num of mixture components <=10

Network
training

- Epochs 2000
- Batch size 500

Adam
Optimizer

Learning rate (α) 1× 10−4

First exponential decay (β1) 0.5
Second exponential decay (β2) 0.99

PacGAN Pac 10

WGAN-GP Gradient penalty factor (λ) 10
Discriminator step* 5

Softmax Non-negative scalar temperature (τ ) 0.2
LeakyReLU Negative slope 0.2
Dropout Probability of an element is 0 0.5

Differential
Privacy

- Clip constant (Cp) 0.01
- Probability of information leakage(δ) 1× 10−5

- Privacy budget (ϵ). 0.1, 1, 10, 100, ∞

statistical similarity between real and synthetic data and compare the ma-
chine learning performance. The privacy cost metrics measure how much
information from the real data may be disclosed by the synthetic data and the
generative models. An overview of evaluation metrics applied in this study
is reported in Table 6.3.

Table 6.3: An overview of evaluation metrics for synthetic data.
Metrics Level Method Data Type

Statistic
similarity

Single
variable

Chi Square (CS) Categorical
Kolmogorov-Smirnov (KS) Continuous

KL Divergence Categorical
Continuous

Variable
pairs

Pearson correlation Continuous
Cramer’s V coefficient Categorical

ML perfor
mance

Whole
dataset

Logistic regression -
Decision tree -
Random forest (Adaboost) -
Multi-layer perceptron -

Privacy
cost

Identity
(Rows)

Hamming distance Categorical
Euclidean distance Continuous

Attributes
(Columns)

Linear regression Categorical
K-Nearest Neighbor Continuous
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Data Utility Evaluation Metrics

Statistical Similarity. We measured the statistical similarity by comparing
the distribution of each variable independently and the correlation between
variables. We include Kullback Leibler (KL) Divergence [57], Pearson’s Chi-
Square (CS) test [58], Kolmogorov Smirnov (KS) test [59], and pairwise corre-
lation difference (PCD) [6]. The KL divergence calculates the marginal prob-
ability mass functions (PMF) for each variable independently of the real and
synthetic data and measures the similarity of the PMFs of the two variables.
It is an information-theory based and asymmetric distance measurement to
observe the information change between distributions before and after infer-
encing. We normalized the score to [0, 1] by calculating 1 / (1 + KL diver-
gence) . When the distributions of two variables are similar, the normalized
scores approach 1. The final score is the average of the scores of all measured
variables in the data. We apply CS and KS statistical tests on categorical and
continuous variables respectively. Different from KL divergence, which mea-
sures information loss from one distribution to another, CS and KS tests are
null hypothesis statistical tests. CS test checks if the frequencies of categorical
values in synthetic data match the frequencies in real data. KS test measures
a symmetric distance between two empirical cumulative distributions of the
continuous variables.

The difference of dependencies between each pair of variables is measured
by the Pearson correlation matrices for continuous variables and Cramr’s V
Coefficient for categorical variables [60]. Cramr’s V Coefficient is based on
Pearson’s chi-square test to measure how strongly two categorical variables
are associated. The difference score is scaled between 0 to 1. The smaller the
score, the less difference between synthetic and real data.

Machine Learning Performance. The motivation of this study is to enable
researchers to build their data analysis model based on synthetic data. The
analysis of the synthetic data is expected to be the same or similar to the anal-
ysis of the real data. Therefore, the experimental datasets are split to training
sets (75%) and test sets (25%). The training sets are fed into the generative
models to produce the synthetic data. Then, a set of machine learning mod-
els (Logistic regression (LR), decision tree (DT), random forest (RF), and mul-
tilayer perceptron (MLP) models) are trained on the real training data and
generated synthetic data separately. Last, the trained machine learning mod-
els are evaluated on the real test data using AUC and F1 scores. The better
and more realistic synthetic data is, the smaller the difference in its machine
learning performance from the real data.
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Privacy Cost Evaluation Metrics

The privacy metrics cover two main classes of information disclosure that
may happen in the synthetic data identity disclosure and attribute disclo-
sure [6]. Identity disclosure means an attacker can exactly identify an indi-
vidual (data sample) in the training data, which can be understood as if we
can find one or more synthetic data with a certain distance to a real data sam-
ple which is used to generate the synthetic data [27]. Hamming distance for
the categorical variables and Euclidean distance for the continuous variables
are calculated on each sample from the synthetic dataset. The attacker may
identify the data sample which is indeed used for training (TP), identify the
sample but the sample is not used for training (FP), correctly identify the sam-
ple which is indeed not used for training (TN), wrongly identify the sample
which is not used for training (FN). The final identity disclosure is measured
using the precision and recall of the above scores.

Attribute disclosure can be interpreted as if an attacker can predict the orig-
inal values of the synthesized variables (sensitive variables) from an individ-
ual level based on some other variables of the real data that are known to the
attacker (known variables). We observe the average posterior probabilities of
the attacker correctly predicting the sensitive variables on the real test data.
The risk of attribute disclosure is affected by the number of known variables
from the source data, the size of the synthetic data, and the attack model set-
ting. A linear regression model is applied to the continuous variables, and a
K-nearest-neighboring model is for the categorical variables. We experiment
on different sets of known variables to predict other original variables on the
same size of the synthetic data from different generative models.

6.5 Results and discussion
This section presents the experiment results of DP-CGANS, CTGAN,
MedGAN, and TableGAN on five datasets. Each experiment was conducted
3 times and the results are the average of them. Then, we present the model
performance of DP-CGANS using different privacy budgets on Adult and
Diabetes datasets and describe the observed limitations of DP-CGANS.

6.5.1 Statistical Similarity
Evaluation results of statistical similarity are presented in Table 6.4. KL di-
vergence, CS, and KS tests measure the similarity of each individual variable
independently (the higher the score, the more similar between synthetic and
real data), while Cramr’s V coefficient and Pearson correlation measure the
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difference of dependencies between a pair of variables (the lower the score,
the more dependencies in real data captured by synthetic data). DP-CGANS
outperforms other models in the CS, KS, and KL Divergence test on cate-
gorical variables in most datasets. The conditional vector and the additional
penalty in the generator of DP-CGANS successfully capture the underrep-
resented categories and the dependencies between them. CTGAN performs
similarly to DP-CGANS because of its conditional GAN structure and sam-
pling method. Both models can handle the datasets with imbalanced vari-
ables better than MedGAN and TableGAN.

Table 6.4: Results of measuring statistical similarity between real and synthetic data.
Adult Census Intrusion Diabetes Cancer

KL Divergence (Categorical)
DP-CGANS 0.921 0.933 0.737 0.982 0.918
CTGAN 0.894 0.834 0.708 0.957 0.881
MedGAN 0.785 0.746 0.605 0.905 0.620
TableGAN 0.746 0.856 0.603 0.941 0.814

KL Divergence (Continuous)
DP-CGANS 0.887 0.828 0.906 0.801 0.552
CTGAN 0.929 0.791 0.922 0.736 0.560
MedGAN 0.115 0.083 0.198 0.184 0.180
TableGAN 0.752 0.460 0.820 0.860 0.565

CS Test (Categorical)
DP-CGANS 0.997 0.995 0.982 0.983 0.984
CTGAN 0.988 0.989 0.984 0.960 0.967
MedGAN 0.976 0.975 0.968 0.949 0.839
TableGAN 0.987 0.987 0.981 0.979 0.964

KSTest (Continuous)
DP-CGANS 0.820 0.796 0.873 0.932 0.910
CTGAN 0.794 0.819 0.870 0.889 0.896
MedGAN 0.127 0.199 0.442 0.176 0.314
TableGAN 0.627 0.440 0.540 0.925 0.896

Cramer’s V (Dependency between categorical variables)
DP-CGANS 0.017 0.024 0.068 0.018 0.029
CTGAN 0.014 0.031 0.085 0.030 0.041
MedGAN 0.061 0.130 0.148 0.063 0.116
TableGAN 0.024 0.031 0.102 0.011 0.030
Pearson correlation (Correlation between continuous variables)

DP-CGANS 0.025 0.043 0.045 0.066 0.020
CTGAN 0.033 0.064 0.050 0.132 0.056
MedGAN 0.487 0.718 0.324 0.279 0.542
TableGAN 0.077 0.058 0.046 0.092 0.051

The results of Cramr’s V Coefficient and Pearson correlation show that DP-
CGANS is outstanding in simulating the dependencies and correlations be-
tween variables. Figure 6.4 shows the differences of dependencies between
categorical variables from the Census dataset and the synthetic data gener-
ated by different models. The darker the blue of the cell, the greater the
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difference in dependence between two variables in the real and synthetic
data. DP-CGANS simulates the most dependencies between variables fol-
lowed by TableGAN and CTGAN, while MedGAN fails to transfer the most
of dependencies. DP-CGANS outperforms TableGAN on the variables that
have multiple major classes and many different minor classes. The reason is
the additional penalty in the generator and the sampling method of training
enable DP-CGANS to transfer the underrepresented dependencies of the mi-
nor classes in the imbalanced variables. DP-CGANS outperforms CTGAN
in the variables that have one or two extreme dominant classes and several
minor classes. The reason is that the construction of the conditional vector of
DP-CGANS aims to capture the dependencies between imbalanced variables,
but this is not presented in CTGAN.

Figure 6.4: Differences of dependencies between categorical variables from real to synthetic
data generated by different models. The darker the cell, the greater the difference in

dependence between two variables between real and synthetic data.

All models have a common challenge, which is to accurately maintain the de-
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pendencies as strong as in real data. For instance, Age and Retirement, or
Employment status (employed, unemployed) and Occupational class (high class,
intermediate, low, not working) have strong dependencies between them. All
models capture the dependencies to a different extent. TableGAN simulates
the most similar strength of these dependencies to the real data, because the
third neural network model in addition to the generator and discriminator in
TableGAN captures the dependencies and classifies if the generated data is
realistic or not.

For the continuous variables, the inserted conditional vector in DP-CGANS
helps in shaping the multimode distributions of the continuous variables and
capturing the correlations. However, we found DP-CGANS suffers from
oversampling the number of modes in the distributions and handling the
variables with a heavy-tailed probability distribution whose tails are not ex-
ponentially bounded. This can be observed from the results of the KL diver-
gence test on continuous variables. KL divergence and KS test are both used
to observe the difference of two distributions, but only the KL divergence
test shows that DP-CGANS does not have a competitive performance. This
is because the differences in the tails of the distributions get amplified in KL
divergence but not in the KS test.

6.5.2 Machine Learning Performance
Figure 6.5 reports the evaluation results of four machine learning models
trained by generated synthetic data. Given that the AUC and F1 score are
more reliable in evaluating model performance on the imbalanced datasets,
we used these two scores compared with the baseline which results from
the real training datasets. The better and more realistic synthetic data is,
the smaller the difference in its machine learning performance from the real
data. In Adult, Census, and Diabetes, DP-CGANS generates the synthetic
data which have the most similar machine learning performance to the real
data compared to other models. In these datasets, most variables are imbal-
anced categorical or binary variables which are handled by inserting the con-
ditional vectors in both DP-CGANS and CTGAN. The advantage of capturing
the dependencies between categorical variables in DP-CGANS is reflected on
Census and Diabetes. The dependencies of variables in these two datasets
have an obvious positive impact on the final classification.

CTGAN shows close performance to DP-CGANS in some experiments
and slightly outperformed in the Intrusion dataset. Intrusion dataset has
a few extremely imbalanced categorical variables and many continuous
variables including heavy-tailed variables. The results show all included
models have difficulties generating synthetic data that simulates such
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extreme distributions from real data. The added conditional vector and
extra penalty to the generator strongly encourage DP-CGANS to balance
the under-sampling classes and dependencies across categorical variables
which weakens the precise mapping of continuous variables. Furthermore,
we found TableGAN has comparable performance with CTGAN and
DP-CGANS in the Cancer dataset. Cancer dataset has a much smaller size
and a simpler structure compared to the other four datasets. As the only one
supervised synthetic data generator in the experiment, TableGAN benefits
from its third neural network as an auxiliary classifier and its convolutional
GAN structure. Other included models are unsupervised synthetic data
generators which typically require more data instances to train.

6.5.3 Privacy Cost
Table 6.5 reports the privacy costs in identity disclosure with certain thresh-
old distances between synthetic and real data instances. Each dataset applies
a different threshold of similarity as the shortest accepted distances between
synthetic and real data instances. A lower precision indicates a smaller pro-
portion of real data instances labeled by an attacker are presented in the train-
ing data. A lower recall indicates fewer real data instances can be detected
by an attacker. A low precision and recall achieve a higher level of privacy.
MedGAN has the least utility of the synthetic data but holds the greatest pri-
vacy guarantee. Note that the privacy score in identity disclosure is under a
certain distance threshold (D). For example, MedGAN has no synthetic data
instances close to any real data instances with a distance threshold at 0.05.
DP-CGANS outperforms other models in Census and Diabetes datasets re-
garding data utility but has the most privacy costs in identity disclosure. Sim-
ilar results are observed in Cancer dataset where TableGAN has best utility
scores but lowest privacy level.

Table 6.5: Privacy measurement in identity disclosure on five datasets. Pre represents
precision score, while Rec represents recall score. Both scores are 0 to 1.

Dataset Adult
(D=0.1)

Census
(D=0.05)

Intrusion
(D=0.01)

Diabetes
(D=0.2)

Cancer
(D=0.2)

Pre Rec Pre Rec Pre Rec Pre Rec Pre Rec
DPCGANS 0.518 0.254 0.576 0.193 0.489 0.389 0.495 0.188 0.585 0.088
CTGAN 0.552 0.272 0.497 0.078 0.496 0.783 0.469 0.127 0.683 0.102
MedGAN 0 0 0 0 0 0 0 0 0 0
TableGAN 0.618 0.110 0.486 0.123 0 0 0.488 0.179 0.895 0.162

The attribute disclosure measurement was calculated as 1−Pattr where Pattr

is the average posterior probabilities of correctly predicting the unknown
(sensitive) variables in real test data. Table 6.6 reports the average score of
experiments on 3, 6, and all rest known variables to predict the unknown
variables. A greater score presents a higher level of privacy. Cancer dataset
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Table 6.6: Privacy measurement of attribute disclosure with using three, six, and all rest
known variables. The average scores are reported.

Dataset Adult Census Intrusion Diabetes Cancer
Cat Con Cat Con Cat Con Cat Con Cat Con

Real 0.281 0.065 0.118 0.066 0.046 0.004 0.427 0.080 0.126 -
DPCGANS 0.300 0.081 0.127 0.081 0.052 0.016 0.448 0.081 0.181 -
CTGAN 0.301 0.151 0.137 0.104 0.049 0.003 0.510 0.082 0.158 -
MedGAN 0.372 0.266 0.361 0.263 0.319 0.196 0.501 0.216 0.258 -
TableGAN 0.305 0.090 0.138 0.142 0.057 0.036 0.492 0.084 0.137 -

has only 2 continuous variables which is not sufficient to conduct an evalua-
tion test. Note that the privacy measurement in attribute disclosure is calcu-
lated with respect to the real data. This means the probability of predicting
unknown variables in the synthetic data is close to (typically higher than) the
probability in the real data. DP-CGANS, which generates the most realistic
synthetic data among other models, has relatively low privacy levels in the
Adult, Census and Diabetes datasets. CTGAN and TableGAN which have
better performance in the Intrusion and Cancer datasets respectively have
the least privacy guarantees in these datasets.

Figure 6.6: AUC scores and privacy level in attribute disclosure of four generators.

The privacy measurements in both attribute and identity disclosure show the
trade-off between synthetic data utility and real data privacy. Figure 6.6 plots
the AUC scores as the indicator of data utility and privacy level against at-
tribute disclosure as the indicator of data privacy. In all datasets, we found
the model that obtains a higher AUC score has a lower level of privacy preser-
vation. On the one hand, we define a generative model is good if it can pro-
duce synthetic data as similar as possible to the real data. This means the
generator in GAN is motivated to minimize the distance between real and
synthetic data. On the other hand, privacy measurement shows a generator
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outputs data that has a smaller distance to the real data takes more privacy
risk in revealing sensitive information from the real data. Therefore, it is an
inevitable trade-off between data privacy and data utility in generating syn-
thetic data. Finally, it is found that all included models obtain a relatively low
level of privacy in the experiments. It explains the essentiality and necessity
of enhancing the privacy guarantee to the construction and training process
of generative models.

6.5.4 DP-CGANS with different privacy budget
The previous experiments were conducted on DP-CGANS without privacy
restrictions (ε =∞) to evaluate the capability in generating realistic synthetic
data with high data utility. Then, we adjust the privacy budget of DP-CGANS
(ε = 0.1, 1, 10, 100, and∞) to enhance the privacy guarantee. Figure 6.7 shows
the overall changes of model performance using different privacy budgets on
Adult and Diabetes datasets. The average scores are plotted in the figure.
Figure 6.7(a) and (b) shows the statistical similarity and ML performance are
climbing up as the privacy budget (ε) increases. A larger privacy budget in-
dicates a smaller scale of noises are added into the model training process
which means a lower the level of privacy is preserved in the synthetic data.
This is proven by the privacy measurement in attribute and identity disclo-
sure under increasing privacy budget as Figure 6.7(c) and 6.7(d) show.

Both datasets demonstrate the trade-off between model performance and pri-
vacy level with similar overall changes under increasing privacy budgets.
However, the privacy budgets show different impacts on the learning per-
formance of the model on different datasets. When adding ε from 0.1 to 1,
the model has an obvious improvement in statistical similarity on the Adult
dataset (figure 6.7(a)). When ε > 1, this increase becomes slower. The cor-
responding changes are observed in figure 6.7(c) and 6.7(d) that the level of
privacy drops steeply when ϵ increases from 0.1 to 1. The model has a rel-
atively stable increase on the Diabetes dataset with a turning point at ϵ=10.
Figure 6.7(d) shows the impact of privacy budget on the model performance
becomes dramatic when ϵ is between 10 and 100. Although the Adult and
Diabetes datasets are both imbalanced datasets and have the same ratio of
categorical and continuous variables, the model reacts on the same privacy
budget with different sensitivities in different datasets. Obtaining the most
optimal balance between model performance and privacy guarantee depends
on the data structure and characteristics of each dataset (such as imbalance
variables, abnormal distributions, sparsity of data).
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Figure 6.7: Statistical similarity, ML performance, privacy measurement in attribute and
identity disclosure of DP-CGANS under different DP budgets.

6.5.5 Limitations
The empirical results in this study should be considered in the light of lim-
itations. First, in the experiments, we sampled 25% of data instances from
the Census and Intrusion datasets in a stratified random manner owing to
the computation resources and time. Using subsamples of the data may limit
the performance of the generative models. However, given the proportion of
our samples from the original dataset and the model performance reported
by other comparable studies, we do not expect that the sampled data would
have a significant impact on the final experiments results.

Second, the conditional vector in the generator of DP-CGANS can success-
fully capture the dependencies between each pair of variables. However, the
generator does not learn to maintain the relations among more than two vari-
ables. Extending the construction of the conditional vector to three or more
variables dramatically increases the dimension of the vector at the expense of
training efficiency. A potential solution can be training the generative model
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in a semi-supervised or supervised manner such as selectively including the
variables and categories in the conditional vectors or introducing a classifier
which is trained with the generator. Further research can be conducted to
improve the capture of dependencies among multiple variables.

DP-CGANS can output differential private (DP) synthetic data with imbal-
anced variables and keeping the dependencies between variables mainly be-
cause of the generator structure. However, the differential privacy budget
(noise) is added to the discriminator and indirectly affects the generator. The
data utility of the synthetic data might drop dramatically when tuning the
differential privacy budget. Therefore, to obtain the optimal balance between
data utility and privacy, DP-CGANS costs computation, time, and effort to
carefully find the best suitable privacy budget for each dataset. In the future
work, we intend to control the impact of adding DP to the network training
on the generator. The solution could be to apply DP directly on the genera-
tor instead of discriminator or stabilize the effect of adding noise on the loss
which the generator receives from the discriminator.

6.6 Conclusion
We proposed DP-CGANS, a differentially private conditional GAN, consist-
ing of four main components - transforming, sampling, conditioning, and
network training to generate realistic and privacy-preserving synthetic data.
DP-CGANS handles data with mixed types and imbalanced variables and
captures the correlations and dependencies between variables with privacy
guaranteed. We compared our model with state-of-the-art generative models
on three public datasets and two real-world personal health datasets using
a set of extensive evaluation matrices focusing on the statistical similarity,
machine learning performance, and privacy measurement. The evaluation
results show that our model outperforms other comparable models, espe-
cially in capturing dependency between variables. Meanwhile, we measured
the privacy risks in different generative models regarding attribute disclo-
sure and identity disclosure. Our experiments prove the trade-off between
output data utility (synthetic data) and input data privacy (real data) and our
model can reduce privacy risks to a certain extent while maintaining data
quality. Finally, we discussed the limitations of DP-CGANS and provided
future directions to improve the generation of synthetic data using the devel-
oped framework.
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Abstract
Developing personal data sharing tools and standards in conformity with
data protection regulations is essential to empower citizens to control and
share their health data with authorized parties for any purpose they approve.
This can be, among others, for primary use in healthcare, or secondary use
for research to improve human health and well-being. Ensuring that cit-
izens are able to make fine-grained decisions about how to use and share
their personal health data will significantly encourage citizens to participate
in more health-related research. In this paper, we propose ciTIzen-centric
DatA pLatform (TIDAL) to give individuals ownership of their own data,
and includes mechanisms to provide fine-grained access to external parties.
The TIDAL platform integrates a set of components for requesting subsets of
RDF (Resource Description Framework) data stored in personal data vaults
based on SOcial LInked Data (SOLID) technology and analyzing them in a
privacy-preserving manner. We demonstrate the feasibility and efficiency
of the TIDAL platform by conducting a set of simulation experiments us-
ing three different pod providers (Inrupt.net. Solidcommunity.net, Self-hosted
Server). On each pod provider, we evaluated the performance of TIDAL by
querying and analyzing personal health data from an increasing number of
participants and variables. The performance evaluation of TIDAL shows the
execution time has a linear correlation between the number of pods on all
pod providers. Platforms such as TIDAL can play an important role to con-
nect citizens, researchers, and data organizations to increase the trust placed
by citizens in the processing of their personal data.
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7.1 Introduction
Giving individuals more control over who can access their personal data for
what purpose and to make their data available using privacy-preserving and
transparent methodologies will significantly encourage their engagement in
health research [1, 2]. Personal health data is needed to improve evidence-
based healthcare research and empower healthcare authorities to optimize
the accessibility and effectiveness of the healthcare services [3]. However,
personal health data is largely collected and managed by various healthcare
service providers. In Europe, many citizens still have limited electronic access
to their own health data, often scattered among service providers [4]. As a
result, citizens have limited control over their own data, or need to control
this data at various locations.

Since the General Data Protection Regulation (GDPR) and ePrivacy legisla-
tion have been released, European Union’s citizens increasingly value their
data rights and information privacy [5]. However, there is no mature technol-
ogy and standards that enable individuals to fully exercise their data rights
in a simple way. The public consultation on the European strategy for data
showed that almost 88% of all respondents (806 contributors) would like to
have more access and control over the data they generate [6]. A large propor-
tion of respondents would be willing to share their data, especially for health-
related research, but a majority of them considered that there are no sufficient
tools and mechanisms to “donate” their data. For example, at present, if in-
dividuals are willing to donate their health data to help chronic disease re-
search, they need to look for an ongoing research study that is recruiting new
participants and has requirements that are applicable. Meanwhile, individu-
als need to trust and be willing to share their data with this research study.
However, sharing personal data often raises concerns about privacy, secu-
rity, ownership, and accountability. Examples of these concerns are: who will
have access to the data and study results, how the individuals can change/re-
voke the permissions to access the data, and whether the data is used for other
purposes.

In this paper, we address the research challenge of how to engage individuals to
“donate” their personal data for health-related research with maximal control in data
access, storage, and analysis? The current personal data management technolo-
gies are mostly research-driven and in their early stages. Given the gap in
the existing personal data platforms, we propose a new citizen-centric data
platform (called TIDAL) that gives individuals fine-grained access to their
data and ensures citizen controlled data are processed in a predefined man-
ner. We designed a prototype as proof-of-concept following an exploratory
technology development process in light of our experience in the develop-
ment of a privacy-preserving distributed data analysis infrastructure in the
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previous studies [7, 8, 9, 10]. TIDAL consists of an integrated set of com-
ponents for requesting subsets of data stored in personal data vaults using
SOLID technologies [11] and analyzing them in a privacy-preserving man-
ner. SOLID, standing for SOcial LInked Data, is a set of technologies that
facilitates users to create decentralized applications using Linked Data and
the W3C standards and protocols. We evaluated the performance of TIDAL
by executing simulation experiments on various sizes of simulation datasets.
The experiments proved the feasibility and efficiency of TIDAL using three
different pod providers (Inrupt.net. Solidcommunity.net, Self-hosted Server).
We believe the TIDAL platform will increase the trust placed by individuals
and the transparency of the processing of their personal data.

We summarize the main contributions of this paper:

• proposing a new citizen-centric data platform (TIDAL) that facilitates
individuals to store and access to their personal data using personal
data vault technologies (such as SOLID) and provide direct consent to
health-related research;

• applying Data Privacy Vocabulary [12, 13] to structure the personal
data requests as digital consents in TIDAL to meet the requirements
of GDPR;

• formulating data requests into RDF format with integrating vocabulary
services and standards to improve the interoperability of personal data
use;

• executing privacy-preserving data mining algorithms automatically us-
ing parameters and configurations promised in the data request and
only the results are sent to the researchers; and

• evaluating the feasibility and efficiency of TIDAL in different experi-
mental settings.

The article below is structured as follows: section 7.2 introduces the recent
related work. Section 7.3 describes the SOLID technology we applied in the
TIDAL platform. Section 7.4 presents the architecture of TIDAL, and demon-
strates how it works for researchers and participants. Section 7.5 describes
the experimental setup and results of TIDAL in different user scenarios. Sec-
tion 7.6 discusses our discovery and limitations of the current version of
TIDAL. Finally, conclusions and future work are outlined in Section 7.7.
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7.2 Related work
Researchers and companies have developed several tools with different
emphases and features to enable individuals to be in control of their data.
We identified the following ten projects and tools which have been applied
in practice and provided a comparison table including detailed information
and additional resources in the supplementary material1. DEecentralised
Citizen Owned Data Ecosystems (DECODE) [14], MyHealthMyData
(MHMD) [15] and OwnYourData [16] are based on distributed-ledger
technologies such as Blockchain to provide traceable and transparent
data-access control. MIDATA [17] and MedMij [18] are national programs
in Switzerland and Netherlands that provide citizens with new data
ecosystems to use their medical data for healthcare services and research.
Digi.me [19] are CozyCloud [20] are commercial products providing mobile
applications and cloud services to share personal data. The Hub of All
Things (HAT) [21] – a foundation –, MyDex [22] – a community interest
company –, and openPDS [23] – a research project – utilize the Personal Data
Store (PDS) [24] technology to provide users with servers to store and share
their personal data and execute on-device computations.

DECODE and MHMD were both funded by the European Union’s Horizon
2020 research and innovation programme [25]. DECODE enables individu-
als to keep personal information private or share it for the public good using
peer-to-peer networks and Blockchain technologies. This ecosystem, from
an operating system to an interactive dashboard, has been developed and
piloted in Barcelona and Amsterdam. However, it focuses on individual con-
trol over data sharing rather than data process and analysis. Individuals can
specify the ”smart rules” for their personal data to pre-define under what
conditions their data can be used. Since DECODE relies on its own operating
system and tools, it lacks the interoperability and extensibility that would be
required for data mobility across healthcare systems and national borders.

MHMD [15] is another Blockchain-based software that connects organiza-
tions and individuals to make anonymised data available for open research. It
enables individuals to provide dynamic consent for different types of poten-
tial data usage and monitor the usage. Similar to the DECODE, the MHMD
consent determines under what conditions the data can be used. MHMD
supports data analysis algorithms combined with secure multiparty compu-
tation and asymmetric encryption for preserving privacy. However, individ-
uals’ data is still hosted at organizations (e.g., hospitals), which are the only
ones empowered to give permission to researchers requesting data. OwnY-
ourData [16], developed by a non-profit organization, is another personal

1https://doi.org/10.6084/m9.figshare.19111508
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data management product that uses Blockchain technology to make data im-
mutable. The key feature of OwnYourData is creating insights into users’
personal data and providing certain algorithms to analyze their own data.

MIDATA [17], a nonprofit cooperative in Switzerland, operates a data plat-
form that enables Swiss citizens to selectively share their data with medi-
cal research and clinical studies. MIDATA shares the same limitations as
DECODE on the interoperability and extensibility of their data ecosystem.
MedMij [18] is established as a standard in the Netherlands for the secure
exchange of health data between Dutch residents and healthcare providers.
MedMij, serving as a high-level guideline, proposes a set of information stan-
dards to structure the health data from different sources and standardize the
data exchange. However, MedMij does not yet include researchers in the net-
work nor facilitates citizens to voluntarily share their health data for research
studies or any other purposes.

Digi.me [19] and CozyCloud [20] deliver commercial products to give peo-
ple control of their data when using web or mobile applications, but both
host data centralized in their own cloud servers. Similarly, MyDex [22] and
HAT [21] offer PDS as cloud hosted servers to store personal data and con-
nect it with other web or moblie applications and services. Different from the
previous tools that host the PDS in their own servers, openPDS [23] allows
users to self-host the PDS and use it as a service. OpenPDS also applies the
SafeAnswers framework which executes the queries inside the PDS rather
than sending anonymized data and returns and aggregates results from more
than one PDS. It allows users to manage data access and monitor data usage.
However, SafeAnswers presents a computational challenge for complex data
analysis and does not consider the scenario of conducting research studies in
a large populations.

The existing solutions often focus on one particular aspect such as personal
data storage and overview, personal data sharing with healthcare services or
with mobile applications and personal data access control. To the best of our
knowledge, there is no platform that enables individuals to connect with re-
searchers to donate their personal data for research while being in control of
the whole data life cycle including data access, storage, and analysis. Only a
few tools support personal data analysis over a number of participants. These
tools face challenges such as the permissions to data are from the data orga-
nizations rather than individuals and the analysis algorithms are relatively
simple. We also see an urgent need for more investments in data quality and
interoperability to improve the feasibility and sustainability of personal data
management platforms [2]. Therefore, we propose TIDAL to fill the gaps that
we have recognized from the existing work.
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7.3 Background
7.3.1 SOLID - Decentralized data management
SOLID (SOcial LInked Data) is a decentralized data management platform
based on W3C standards, Resource Description Framework (RDF), and Se-
mantic Web technologies, initiated by Tim Berners-Lee [26, 27, 28]. Rather
than the tech giants storing and controlling personal data from their users,
SOLID technologies enable users to store and manage their own data inde-
pendently from the applications so that users can retain sovereignty over
their data. SOLID is composed of three core components - the data pod (i.e.,
where the data is stored), the application (i.e., the services that users can use
and grant access to), and providers (i.e., where the pod and application are
technically hosted).

Each SOLID user is assigned with a WebID2 as a unique global ID for identi-
fication and authentication. SOLID data pods are web-based storage services
and databases where various types of data can be stored such as RDF triples,
free text, images, videos, or even webpages. However, SOLID is featured
by its capability to parse and serialize structured data using RDF in syntaxes
like Turtle and JSON-LD. Data in SOLID pods can be accessed and managed
by a decentralized authentication3 and Web Access Control (WAC)4 mecha-
nism [26] which is a decentralized cross domain access control system. WAC
in SOLID provides the pod owners with a fine-grained access control for ev-
ery single data element in their data pod by granting other SOLID users and
applications the permissions to read, modify, and write the stored data ele-
ments. The Access Control List ontology5 [29] is applied to SOLID to describe
the different operations over the target data elements in the pods.

SOLID applications are developed on top of the aforementioned technology
stack. Most applications are developed for web or mobile. Users are able to
grant and revoke permissions to both SOLID applications and other users at
any time. SOLID allows multiple applications to access and reuse the same
data from a pod, thereby potentially minimizing data duplication and stale-
ness. SOLID pods can be hosted on public servers by pod providers which
play a similar role as the cloud storage providers. SOLID pods can also be
self-hosted on personal servers, and migrated from pod providers to self-
hosted. A single SOLID user can own more than one data pod which is hosted
by one or multiple pod providers. Users are able to select and change their

2https://www.w3.org/wiki/WebID
3https://solid.github.io/authentication-panel/solid-oidc
4https://solid.github.io/web-access-control-spec
5https://www.w3.org/ns/auth/acl
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pod providers at any time based on providers’ geographical locations, re-
sponsibilities, different degrees of privacy protection and legislation. Thus,
SOLID presents a distributed scenario that challenges the communication be-
tween SOLID applications and data pods, but provides fine-grained data con-
trol to users.

7.3.2 Personal Health Train - Distributed data analysis initiative
The Personal Health Train (PHT) initiative was designed for healthcare inno-
vators and researchers to access heterogeneous data sources and learn from
the distributed data in a privacy-preserving manner [30], [10]. The essence
of this approach is to transfer the research questions and analysis algorithms
(from researchers) to data rather than centralizing data and moving them to
researchers. Only the analysis results are sent back to the researchers.

The PHT technology has been developed and implemented in several real-
life use cases in the healthcare domain. In our previous studies, we have
developed the PHT infrastructure to address horizontally and vertically par-
titioned data problems [9], [8], [31], [32]. In this study, we further extend
the PHT infrastructure from the level of information sharing among organi-
zations to information sharing by individuals themselves.

7.4 Overview and implementation of TIDAL
The primary use case of TIDAL is for researchers (data requesters) who want
to analyze personal data and participants (data subjects) who are willing to
donate their data for research. In this section, we will present the overview
and implementation of TIDAL by describing a use case between two users.

The participants and researchers need SOLID accounts and data pods so that
they can be authenticated on TIDAL. TIDAL facilitates them to create new
data elements or files, modify or delete existing RDF data elements, and
query data elements from their own pods. An example of fetching RDF data
from a solid pod is shown in Figure 7.1.

TIDAL authenticates and interacts with SOLID pods with a Javascript pack-
age - solid-node-client (V2.0.2) [33]. Solid-node-client enables pod owners to
access their pods, create or modify data in their pods, and grant or revoke the
permissions via a web application. To store, parse, and query RDF data from
SOLID pods, TIDAL uses the rdflib.js (V2.1.6) [34] and tripledoc (V4.4.0) [35]
library. Similar libraries such as solid/query-ldflex can also be used to access
data in Solid pods through LDflex expressions [36].
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7.4.1 Researcher Posts Participation Request
In the first phase, a participation request is crafted by the researcher. The
content of the request is only stored at the researcher’s SOLID pod, while
the Uniform Resource Identifier (URI) of the request is stored in an index file
on TIDAL. Subsequently, TIDAL reads the index file to find all the existing
requests and presents them to the participants for approval (Figure 7.2).

Figure 7.1: An example of query RDF data file from a SOLID pod on TIDAL.

To post a participation request, the researcher is required to register as a “re-
searcher role” by providing basic information such as job position, affiliation,
and research topics. The researcher is issued a public-private key pair that
will be used to verify the identity of the researcher and the integrity of the
request. When the researcher publishes a request, the URI and content of
the request will be automatically signed by the researcher’s private key. Any
changes to the request will cause a verification failure when the request is ex-
ecuted to retrieve participants’ data. TIDAL uses the Ed25519 algorithm [37,
38], a high-speed and high-security signature scheme, for public-key signa-
ture encryption. Ed25519 is an implementation of the Elliptic Curve Digi-
tal Signature Algorithm (EdDSA) using SHA-512 (SHA-2) and Curve25519
with Twisted Edwards Curve [39]. It has been widely used in protocols such
as TLS 1.3 and SSH [40]. TIDAL uses Ed25519 from the TweetNaCl (v1.0.3)
package [41], a port of Networking and Cryptography library (NaCl) [42] to
Javascript.

175



Chapter 7. ciTIzen-centric DatA pLatform (TIDAL): Using Distributed
Personal Data in a Privacy-Preserving Manner for Health Research

Figure 7.2: Interaction between researchers and participants on TIDAL. The researcher
completes and stores the participation request form in their SOLID pod. A participant can

view and approve the request on TIDAL web application. The participation record is stored at
the participants SOLID pod and at the trusted party.

The researcher creates and publishes a participation request by completing
a participation request form (Figure 7.3). The request form was designed as
a digital consent to be informed and specific. Complying with the GDPR
requirements on consents, the request form describes the identifiers of the re-
quester (researcher) and controller (trusted party – a certificated organization
compliant with GDPR that executes the requests and analyses), what data
elements in which personal data categories will be processed in what time
frame, how the requested data will be processed for what purposes, and the
possible risks and consequences of data processing such as for participants
in relation to automated decision making. The request is represented using
Schema.org vocabulary (https://schema.org/) and the Data Privacy Vocabulary
(DPV, http://www.w3.org/ns/dpv). The DPV specifically captures the nature of
data processing in relation to EU General Data Protection Regulation. The
overall schema of an example participation request is illustrated in Figure 7.4
and the stored RDF format of the example instance is shown in Listing 7.1.

The request form includes fields to specify the following:

Requested field (RF) 1: the purpose of the research where researchers
clearly indicate the purpose of processing personal data in their research.
Researchers can select one or more from a list of data processing purposes
described in DPV such as dpv:Security, dpv:ResearchAndDevelopment. These
elements will be described and stored as http://www.w3.org/ns/dpv#Security
and http://www.w3.org/ns/dpv#ResearchAndDevelopment in the request form.
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RF 2: description of the specific purpose where researchers elaborate the
purpose with more details in human readable text. Researchers can fill in an-
swers in free text such as “Learn association between the status of Type 2 diabetes
and patients’ dietary patterns using linear regression”.

RF 3: the category of requested data elements where researchers indicate
which personal data category best describes the requested data elements. Re-
searchers can select one or more from a list of personal data categories de-
scribed in DPV such as dpv:Health or dpv:Income and stored them in the re-
searcher’s SOLID pod.

Figure 7.3: A participation request form on TIDALcompleted by a researcher.

177



Chapter 7. ciTIzen-centric DatA pLatform (TIDAL): Using Distributed
Personal Data in a Privacy-Preserving Manner for Health Research

Figure 7.4: Schema of an example of a participation request.

RF 4: the data elements where researchers indicate the data elements
(URI) are requested from the participants. Researchers can fill in one or
more URIs of the requested data elements. Researchers can also search
for the existing URIs from the existing ontologies and select the ones
for the requested data elements. For example, instead of requesting the
“Age” in plain text, researchers can set the URI of Age in SNOMED CT
http://purl.bioontology.org/ontology/SNOMEDCT/397669002 as requested data
element in the form.

RF 5: the expiration date of consent where researchers specify an exact date
when the consent will be no longer valid. Researchers can only give future
dates as answer in this field such as 2025-01-23.

RF 6: the number of individuals who agree to participate in the study where
researchers specify a minimal number of participants required to initiate the
data processing. Researchers can only give integer numbers as the answer in
this field such as 1000.)

RF 7: the categories of data processing where researchers indicate which cat-
egoryy or a chain of data processing will be performed on the requested data.
Researchers can select one or more from a list of data processing categories
described in DPV such as dpv:Copy, dpv:Anonymise, and dpv:Analyse.

178



RF 8: the methods or algorithms in data processing where researchers spec-
ify how the requested data will be processed. Researchers can select one or
more from a list of predefined algorithms such as Linear or logistic regression.

(Optional) RF 9: the consequences and impact where researchers commu-
nicate the possible risks and consequences of data processing to the partici-
pants such as for participants in relation to automated decision making. Re-
searchers can answer in free text that is human-readable and understandable
for the general public.

@prefix : <http://exampleresearcher.solidprovider.com/public/request.ttl#>.
@prefix schema: <https://schema.org/>.
@prefix exre: <http://exampleresearcher.solidprovider.com/profile/card#>.
@prefix XML: <http://www.w3.org/2001/XMLSchema#>.
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix dpv: <http://www.w3.org/ns/dpv#>.
@prefix SNOMEDCT: <http://purl.bioontology.org/ontology/SNOMEDCT/>.

:161964062096710764675982245664
a schema:AskAction, dpv:PersonalDataHandling;
rdfs:label "Learn association between T2DM and dietary pattern";
schema:collectionSize 32;
schema:creator exre:me;
schema:DataFeedItem SNOMEDCT:10396001, SNOMEDCT:230125005, SNOMEDCT:56718006,

SNOMEDCT:73211009;
schema:dateCreated "2021-01-18T00:00:00Z"ˆˆXML:dateTime;
dpv:hasAlgorithmicLogic "Linear Regression";
dpv:hasConsequences "Help diabetes patients understand the impact of their

dietary pattern";
dpv:hasContext SNOMEDCT;
dpv:hasDataController exre:me;
dpv:hasExpiryTime "2021-12-31T00:00:00Z"ˆˆXML:dateTime;
dpv:hasPersonalDataCategory dpv:Health;
dpv:hasProcessing dpv:Analyse;
dpv:hasPurpose dpv:ResearchAndDevelopment.

Listing 7.1: An example of generated RDF triples of a request stored in researcher’s pod

To improve the interoperability of the requested data elements, we have in-
tegrated BioPortal API [43] in TIDAL to help researchers use standardized
ontologies and terminologies for specific information elements. Bioportal is
the most comprehensive ontology repository for biomedical ontologies in-
cluding more than 800 ontologies. TIDAL supports researchers to search the
existing biomedical ontologies and terminologies provided by Bioportal and
apply them to the requested data elements. For example, instead of using “di-
agnosis” as a requested data element, researchers can look for the terms from
well-established ontologies such as “http://purl.obolibrary.org/obo/NCIT C152”
or “http://ncicb.nci.nih.gov/xml/owl/EVS/Thesaurus.owl#C15220”, by searching
the keyword “diagnosis” in Data Elements (URI) in the request form.

Each request form is assigned with a URI when it gets published. All the
information in the form is structured in RDF format as a schema:AskAction and

179



Chapter 7. ciTIzen-centric DatA pLatform (TIDAL): Using Distributed
Personal Data in a Privacy-Preserving Manner for Health Research

dpv:PersonalDataHandling and stored in the researchers’ SOLID pods (Step 2
in Figure 7.2). The request is signed with the researcher’s private encryption
key while it is published in order to prevent any subsequent changes. The
URI and the signature of the request are stored on TIDAL, while the content
of the request is only stored in the researcher’s SOLID pod.

7.4.2 Participant Views and Approves Requests
All published requests that are in the valid period (i.e., before the expira-
tion date of the request) are visible on TIDAL. TIDAL queries RDF data from
the request files and displays them in a human readable manner in a card
view. We assume the participants have their personal health data (e.g., med-
ical records, medications, lifestyle and behavior data) structured and stored
using RDF in their own SOLID pods. Each card is linked to the original re-
quest file from the researcher’s SOLID pod. Figure 7.5 shows an example
of the published participation requests view on TIDAL from a participant’s
perspective. The research purpose, personal data category, data processing
category, and data elements are linked with the valid URIs of the terms.

Figure 7.5: An example of viewing published participation requests on TIDAL.

If TIDAL detects the requested data elements in the participant’s pod, the par-
ticipant will be able to voluntarily join the data request by setting up a prefer-
able withdrawal time (earlier than the request expiry date) and selecting the
party they trust to process their personal data. TIDAL generates an instance
adhering to the schema:JoinAction and dpv:Consent in RDF format describing
which request has been approved at what time and until when this approval
is valid. The statement is structured by using DPV and stored in a private
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folder in the participant’s SOLID pod. Figure 7.6 and Listing 7.2 shows the
schema of an example of participation and generated consent statements.

By approving the request, the participant gives the trusted (or authenticated)
party access to the requested data elements in the pod. The participant’s We-
bID will be registered at the trusted party under the analysis request URI
(Step 4 in Figure 7.2). TIDAL generates logging information in participant’s
pod including the participant at what time giving whom (WebID) access to
what data elements in which data request (request ID) and the valid period of
the permission. The logging is readable by the participants but not editable
by anyone. Until now, data elements have not been accessed and retrieved
by any parties.

If TIDAL fails to detect the requested data elements in the pod, the participant
is not able to join the research. It is possible that the participant does not have
the requested data or the researcher and participant use different standards or
ontologies to describe the data elements. In this case, the participant can send
messages to the researcher anonymously on TIDAL to report this issue.

Figure 7.6: Schema of an example of participating in a request.
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@prefix : <http://participant.solidProvider.com/private/participation#>.
@prefix dpv: <http://www.w3.org/ns/dpv#>.
@prefix part: <https://participant.solidprovider.com/profile/card#>.
@prefix req: <https://researcher.solidprovider.com/public/request.ttl#>.
@prefix extp: <http://trustedparty.solidprovider.net/profile/card#>
@prefix app: <https://solidapp.com/

:16197041266295299657542155198
a schema:JoinAction, dpv:Consent;
schema:dateCreated "2021-02-18T00:00:00Z"ˆˆXML:dateTime;
dpv:DataSubject part:me;
dpv:hasConsentNotice req:161964062096710764675982245664;
dpv:hasExpiry schema:false;
dpv:hasExpiryTime "2021-12-31T00:00:00Z"ˆˆXML:dateTime;
dpv:hasProvisionMethod app:participate;
dpv:hasProvisionTime "2021-02-18T00:00:00Z"ˆˆXML:dateTime;
dpv:hasWithdrawalTime "2021-09-18T00:00:00Z"ˆˆXML:dateTime;
dpv:hasRecipient extp:me.

Listing 7.2: An example of generated participation statements in a RDF format in the
participant’s SOLID pod (when approving the request).

7.4.3 Data Retrieval and Analysis Execution
To process the request, the following conditions need to be satisfied: (1) the
request being in the inclusion period, and (2) the number of participants ex-
ceeding the minimum number set in the request. When the request meets
both conditions, the researcher can communicate with the trusted party on
TIDAL to trigger the data retrieval and analysis. The trusted party hosts the
data analysis component including verifying the request, querying data from
participants’ pods, and executing the predefined analysis algorithms. The
data analysis component was built using Javascript and Docker Containers.
Docker Container has similar resource isolation and allocation benefits to vir-
tual machines, creating temporary and secure sandboxes. We used the node-
docker-api package (version-1.1.22) [44] in a combination of solid-node-client
and rdflib.js libraries to access SOLID pods from a Docker container.

Figure 7.7 shows the workflow of data retrieval and analysis after the
researcher triggers the execution of a request. TIDAL will first generate
and send a schema:ActivateAction message (Listing 7.3) to the trusted party.
The request file is retrieved from the researcher’s pod, parsed, and verified
using the public key. The data must specify the docker image identifiers
(dpv:hasAlgorithmicLogic), requested data elements (schema:DataFeedItem),
valid period of the request (dpv:hasExpiryTime) and other input parameters
for the trusted party to retrieve the Docker image from the central repository
and execute the analysis. TIDAL can manage multiple data retrieval and
analysis request from researchers simultaneously.
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Figure 7.7: The workflow of data retrieval and analysis triggered by the researcher. The
analysis execution occurs at the trusted party, and only results are returned to the researcher.

@prefix : <http://exampletp.solidprovider.net/inbox/triggermessage#>.
@prefix schema: <https://schema.org/>.
@prefix req: <http://researcher.solidprovider.com/public/request.ttl#>.
@prefix exre: <http://researcher.solidprovider.com/profile/card#>.

:160622932739325095672093710975
schema:actionStatus schema:ActivateAction;
schema:creator exre:me;
schema:dateCreated "2021-04-20T09:37:57.499Z"ˆˆXML:dateTime;
schema:target req:161964062096710764675982245664.

Listing 7.3: A generated trigger message (Activate Action) sent by the researcher.

If the integrity of the request is verified, the trusted party fetches the re-
quested data elements from each participant’s pod (adhering to participation
constraints such as participation time period) without storing their identifiers
(i.e., WebIDs). This fetching process includes querying full RDF files from
participants’ pods, parsing them using the rdflib.js library, and extracting the
requested data elements. When any data are being retrieved from the par-
ticipants, TIDAL writes logging records in participants pods about what data
elements are extracted by whom (WebID) at what time for which data request
(request ID), and whether the analysis is executed. The queried data is then
fed into the data analysis model which is pre-defined in the Docker image. Fi-
nally, the results of the analysis will be generated automatically and sent back
to the researcher’s pod. All received and created information at the trusted
party such as queried data and intermediate results will be destroyed.
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7.5 Experiments and results
7.5.1 Experiment Setting
At the moment of implementing TIDAL (Dec 2020), there were two public
SOLID pod providers: Inrupt.net and Solidcommunity.net. We tested the fea-
sibility and efficiency of TIDAL using two public pods providers and one
self-hosted server. Each pod provider hosts 256 SOLID pods, corresponding
to 256 participants. Each participant has a data file containing 128 generated
variables and values structured by SNOMED CT [45] vocabularies in RDF/-
turtle format in their SOLID pods. A simplified example of the data file is
presented in Listing 7.4.

@prefix : <https://exampleparticipant.solidprovider.com/profile/card#>.
@prefix SNOMEDCT: <http://purl.bioontology.org/ontology/SNOMEDCT/>.

:me a SNOMEDCT:116154003; # Patient
SNOMEDCT:397669002 "27"ˆˆxsd:int; # Age
SNOMEDCT:50373000 "165"ˆˆxsd:int; # Height
SNOMEDCT:726527001 "55"ˆˆxsd:int; # Weight
SNOMEDCT:263495000 SNOMEDCT:248152002; # Gender, Female
SNOMEDCT:271649006 "110"; # Systolic blood pressure
SNOMEDCT:271650006 "90"; # Diastolic blood pressure
SNOMEDCT:405751000 SNOMEDCT:44054006. # Type 2 diabetes

Listing 7.4: An example of the RDF data file in a participant’s SOLID pod.

Using each pod provider, we conducted a set of experiments using an in-
creasing number of participants and variables. We started with requesting 4
variables from 4 to 256 participants, and ended with requesting 128 variables
from 4 to 256 participants. The experiments focused on the steps after the
researcher collects enough responses from the participants and triggers the
analysis. The execution time has been measured from:

1. querying data request URI;

2. querying signature and verification key of data request;

3. verifying signature to ensure the request has not been modified;

4. (if the verification succeeds) querying the content of data request and
WebIDs of participants; and

5. querying RDF data from all participants’ pods.

The web interface of TIDAL was developed using the Semantic User Inter-
face Framework (V2.4.2) [46] with responsive and scalable layout. We tested
the web interface in the recent versions of Safari, Chrome, and Firefox. Data
retrieval and analysis is performed on a 2.3 GHz PC using Dual-Core Intel
Core i5 with 16GB RAM and 500GB hard disk running MacOS 10.15.7. To
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run the simulation experiment, we created 256 SOLID pods, generated and
stored simulation data in each pod, and granted permission to the requests in
an automatic way.

7.5.2 Results
Figure 7.8 shows how TIDAL scales for querying and analyzing data from
individual pods as we increase the number of variables from 4 to 128 and
the number of pods from 4 to 256 hosted by Inrupt.net, Solidcommunity.net,
and the self-hosted server. The pod providers limit the number of requests
that can be responded to at one time by the servers. Considering the scalabil-
ity, we enable TIDAL to access participants’ pods in a concurrent way using
HTTP requests. TIDAL only queries the required data elements from SOLID
pods of 64 participants simultaneously. Once a task gets finished, a new task
is scheduled in the execution queue. We ran each experiment 10 times and
presented the average time of the 10 experiments to avoid possible network
latency fluctuations.

Figure 7.8 shows that the total time costs in querying 4 and 8 pods is approx-
imately 4 to 5 seconds with a negligible increase as the number of variables
increases. When we query data from a large number of pods, the time costs
in fetching data from participants’ pods becomes substantial. It rises linearly
when we increase the number of pods using all pod providers. In the case
of querying data from 256 pods, a gradual rise in time costs is observed as
the number of variables increases. In all experiments, the time costs of the
first 4 execution steps are constant and independent of how many variables
and pods are required because they query information from a fixed number
of pods from researchers or trusted parties.

Figure 7.9 shows the total time cost when querying the number of variables
from 4 to 128 and the number of pods from 4 to 256 on three pod providers.
From the experiments on all pod providers, the total time cost linearly scales
when the number of pods is increased. The more variables are queried from
each pod, the steeper the increase in time cost is presented. By contrast, the
Inrupt.net server has a more stable rate and the least time consumption than
the other two pod providers when querying data from more than 64 pods.
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Figure 7.8: Time costs in each execution steps in quering and analyzing data from SOLID
pods with increasing the number of variables and pods hosted by Inrupt.net,

Solidcommunity.net, and self-hosted server respectively.
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Figure 7.9: Total time costs in querying the increasing number of variables and pods on three
pod providers Inrupt.net, Solidcommunitynet, and self-hosted server.

7.6 Discussion
We have demonstrated and tested a ciTIzen-centric DatA pLatform (TIDAL)
using an increasing number of requested data elements retrieved from an in-
creasing number of SOLID pods. From the performance evaluation of TIDAL,
the execution time shows a linear correlation between the number of pods
and the number of variables. The process expends the most of the time in
querying data from all the participants. However, it only requires an aver-
age of 40 seconds to query 128 variables from 256 participants’ SOLID pods.
For a limited set of participants, this can be considered as an acceptable time
for a batch process for use cases which do not demand instant results. In the
future, we will improve the workflow and reduce the processing time.

When querying data from enormous pods, the number of variables being
queried influences the total querying time (Figure 7.9). A possible solution
to improve the query performance would be the provision of SPARQL sup-
port on SOLID pods which is missing in the current SOLID specification. A
SPARQL endpoint would facilitate the execution of complex queries on pods
instead of retrieving full RDF files and post-processing them on the client side
to extract the requested data elements, decreasing applications performance.
The increase in time of the Fetch RDF data from all participants pods (Figure
7.8) and the execution (Figure 7.9) is also influenced by the limited number
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of simultaneous requests being handled by the SOLID server. Additionally,
the processing capability of the experimental hardware also created a bottle-
neck on the querying and analyzing data processes. Therefore, for a practical
application we advise the allocation of sufficient computational resources at
key architectural locations to reduce the potential bottle-neck when querying
and analyzing data from a large number of participants’ pods.

TIDAL supports users to store and request personal data in a structured
RDF format using well-established ontologies and terminologies by integrat-
ing the Biopartal API. These structured data are human and machine read-
able, provide language neutrality, unambiguous definitions, and clear rela-
tionships. It will contribute to enrich and improve the quality of personal
data in the SOLID pods by linking data from multiple data sources. Further-
more, to align with the data protection laws such as EU General Data Protec-
tion Regulation (GDPR), TIDAL applied the Data Privacy Vocabulary in the
participation request to describe and represent information related to request-
ing and processing of personal data. Data protection laws grant data subjects
(participants) rights to withdraw or modify their data anytime they want. On
TIDAL, these rights are respected. After the participants approve the data
request, they can still update the data elements or withdraw the approval de-
cision anytime. The analysis can be done on the updated value of the data ele-
ment or without the data elements which have been withdrawn. This process
can also enhance reproducibility in research, as researchers can expand and
scale their research, both in participants as future long-term effects/follow-
up studies.

Furthermore, participants’ data are queried and analyzed only at the trusted
party. Researchers can only formulate the request, define the parameters of
the algorithm, and receive the final analysis results but never have access to
the data. In our current approach, the trusted party can be a separate, in-
dependent entity in comparison to the researcher, SOLID provider and/or
participant. However, if the SOLID provider hosts the trusted party, this
trusted party can become a node in a Personal Health Train (PHT) or Fed-
erated Learning (FL) infrastructure. In such an infrastructure, the research
question travels to the data rather than data being transported to the re-
search question. PHT or FL methodologies connect multiple distributed data
sources (e.g., hospitals, clinics) and enable researchers to send analysis mod-
els to each data source (e.g. SOLID providers) and get the final learning re-
sults. However, in addition to strengthening the binary connection between
data sources and researchers, TIDAL emphasizes on engaging individuals in
health research and connecting them with both researchers and data sources.
This is currently still missing in most PHT/FL implementations.

However, our development has to be seen in light of some potential limita-

188



tions. First, we assume participants have their personal data structured and
stored in their own SOLID pods. In practice, people who do not have enough
knowledge about the data or the technologies will face challenges to struc-
ture and store their data correctly. To tackle this limitation, one solution can
be encouraging data collectors such as hospitals or pharmacies to help partic-
ipants structure their own data. For example, if the patients’ medical records
have been structured and linked with some international terminologies by the
hospital, then the hospital can request to store the structured medical records
data to patients’ SOLID pods directly.

Furthermore, the current version of TIDAL presents every published data re-
quest that is in the valid period to all participants. In this case, participants
receive some data requests that are not relevant to them. As researchers do
not know which participants have the relevant data for their research, they
are not able to send the data request to the target cohort instead of the general
public. Therefore, to improve TIDAL, we are investing in generating privacy-
preserving metadata of each SOLID pod. The privacy-preserving metadata is
supposed to describe sufficient information about one pod but not reveal any
sensitive information. One of the potential solutions is to employ Bloom Filter
which is a probabilistic data structure for efficient set membership querying
[47]. Bloom filter tests whether the participant has the requested data ele-
ments in their data pods and return two possible answers - ”probably in the
pod” or ”definitely not in the pod”. With this method, we can prevent the
participants in a specific study (e.g. for psychological disorders) from being
identified that they are diagnosed with a specific disease or disorder. Another
approach is that TIDAL asks participants to indicate their preference on the
type of the research and data request. For example, if the participant is only
interested in diabetes research, then TIDAL will only present data requests
that are related to diabetes research in order to decrease the complexity of
using TIDAL for general users.

7.7 Conclusion
In this paper, we presented a novel citizen-centric data platform (called
TIDAL) to give individuals fine-grained access to their data and facilitate
health research. We demonstrated the feasibility and efficiency of TIDAL
by running a set of simulation experiments using different numbers of
variables and SOLID pods hosted on three different providers (Inrupt.net,
Solidcommunity.net and a self-hosted server). TIDAL is not only limited to
health research, it can be used in other fields such as social sciences (e.g.,
demographic and anthropology studies), economics and finance studies,
political, marketing and education research.
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To improve the user experience, we intend to recruit a group of users to assess
the human interaction of TIDAL and collect their feedback. In the future, we
will evaluate TIDAL in a real-life use case with real participants and health
researchers. We will evaluate how usable the request form is for researchers,
and how long it will take researchers to complete the entire request form.
Meanwhile, we will also investigate how understandable the data request
cards are for general participants, and how easy they feel to approve and
withdraw the permissions.

The current version of TIDAL allows researchers to only perform a prede-
fined set of analysis models. More complex analysis models will be designed
in future work to facilitate researchers to perform experiments according to
their scientific questions. Researchers can apply the needed model and tune
the parameters instead of coding or modifying the entire model. The risk of
hacking or data leak in the analysis process can be minimized. Another future
work can be considered is to improve the logging process. The logging files
in the current version of TIDAL stores the data access records in participants
SOLID pods when the participants grant permission or anyone access to their
data. Next, we intend to investigate in applying Blockchain technologies for
handling loggings in a more transparent and secure manner. Several studies
have developed tools integrating SOLID and Blockchain [48], [49].

Furthermore, the current version of TIDAL only handles static data. In the
further development, we consider extending TIDAL to also handle streams
of RDF data (RDF triples or graphs with temporal annotations) or real-time
data processing [50]. For example, TIDAL users can synchronize their health
or fitness data from their wearable devices such as mobile phones or fit-
ness watches to their SOLID pods. These data are first converted to RDF
stream data and stored in the users’ pods. Then, we consider integrating with
RDF Stream processing engines in TIDAL to handle the long-standing query,
which is continuously executed, over RDF stream data from the distributed
SOLID data pods.
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Chapter 8. General Discussion

This chapter starts with a review of each chapter in this thesis. Then, we dis-
cuss the scientific challenges that are addressed by this thesis when applying
theoretical privacy-preserving distributed data mining methods to practical
applications. Furthermore, we present the development and potential values
of synthetic data followed by a discussion of necessary ethical-legal support
in the generation and use of synthetic data in practice. Moreover, we high-
light the importance of interdisciplinary collaborations with ethical-legal ex-
perts in developing new technologies for privacy and data protection. Finally,
we picture a possible future in which citizens take more control over their
data access and how their data is processed. We identified what is needed to
achieve this future by changing the current centralized data ecosystem to a
fully decentralized personal data network.

8.1 Review of chapters
Chapter 2 presents a systematic overview of the development and the exist-
ing technologies for analyzing distributed data in a privacy-preserving man-
ner. In this chapter, we analyzed the field, compared existing technologies,
identified several remaining issues, and provided recommendations for im-
proving and maturing the field of analyzing distributed data in a privacy-
preserving manner. Chapters 3 to 5 focused on developing a secure infras-
tructure and methods to combine and analyze distributed data without re-
vealing the source data. Instead of centralizing the data, the infrastructure en-
ables researchers to send data-processing applications to each involved data
organization (organization that collects, maintains, or provides data for pri-
mary or secondary use). These applications can query data, pre-process data,
and execute machine learning or statistical analysis. The data organizations
only return the results of the analysis instead of the source data (Chapter
3). As a use case, this infrastructure has been installed and tested success-
fully in collaboration with the Maastricht Study and Statistics Netherlands, to
study annual healthcare costs in relation to the incidence of Type 2 Diabetes
(Chapter 4). Based on the experience and the limitations of the infrastructure,
Chapter 5 proposes the privacy-preserving generalized linear models to solve
the challenge of agreeing on a trusted third party by all the organizations in
practice and improving the efficiency of the learning process.

While addressing the privacy concerns from the data organization perspec-
tive, we observed that the new privacy-preserving distributed learning ap-
proaches bring new challenges to researchers, such as building accurate anal-
ysis models without using the source data. Chapter 6 tackles this challenge
by proposing a conditional generative adversarial network combined with
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differential privacy techniques. The proposed generator can handle the im-
balanced issue in the source data and capture the correlations between vari-
ables. Its performance is proven to be better than other state-of-the-art gen-
erative models using extensive evaluation metrics. Finally, in Chapter 7, we
developed a citizen-centric data platform for individuals to consent (or with-
draw consent) for their data to be shared for health research, and get in-
formed about the research results. The objective of this platform is to shift
data access control from data organizations to individuals, and give individ-
uals the means to decide at a granular level how their data is shared and
used. Citizens, as being a custodian of their own data, can be connected with
researchers, and data organizations to increase the trust placed by citizens
in the processing of their personal data. This thesis gradually addresses the
challenges of analyzing distributed personal data from the aspects of data
organizations, researchers, and citizens.

8.2 Challenges in applying theories to practice
With the widespread implementation of data protection laws such as the Gen-
eral Data Protection Regulation (GDPR) and ePrivacy legislation, the atten-
tion on combining and analyzing distributed personal data has been dramat-
ically increased. Our systematic review in Chapter 2 shows the total num-
ber of publications in this domain vastly increased in the last decade. In the
past five years, the theoretical methods from the research community have
been increasingly developed in practical use cases in healthcare [1, 2, 3, 4],
finance [5], and technology companies [6, 7, 8]. The interests of both public
and private sectors accelerate the transformation of theoretical methods into
practical applications. However, there are some challenges hindering the ap-
plication of privacy-preserving technologies in practice.

8.2.1 Data linkage in vertically partitioned data
In the case of analyzing vertically partitioned data, one point which is impor-
tant for practice, but easily overlooked by the theory, is how to accurately link
data records across distributed datasets without revealing sensitive identifi-
able information. Data parties must link their data and/or order them in an
identical manner prior to data analysis. However, many privacy-preserving
methods assume this correspondence between data records exists by default.
In fact, this assumption is not valid in the most practical cases. The secure
infrastructure we developed in Chapter 3 and Chapter 4 addresses this issue
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by using one-way pseudonymization on the selected linking features and se-
curely computing the set intersection across two parties before the data anal-
yses start. The practical application of the infrastructure in Chapter 4 presents
a successful data linkage with 97% matching accuracy on a dataset of 1 mil-
lion data records.

8.2.2 A trusted third party in reality
Our approach, in chapter 3 and chapter 4, like many other privacy-preserving
methods, requires a third party or a secure environment (in our case) that
all participating organizations can fully trust and agree on. It is challeng-
ing to find a fully trusted third party while complying with restrictive leg-
islation and organizational regulations. In our application, we established
an ethical-legal framework to support the trusted secure environment and
adapted the technical development to comply with the organizational regu-
lations. Implementing such a privacy-preserving data analysis infrastructure
requires close interdisciplinary collaboration between people from the tech-
nical, ethical-legal backgrounds, and domain-specific experts of the research
questions. The idea of our infrastructure which is the researcher sending the
algorithm to the data, rather than receiving a copy of the data, shows an en-
tirely new paradigm for most organizations. Stakeholders need the time and
effort to carefully evaluate the new infrastructure in terms of their legal and
technical requirements. We will elaborate more on the importance of ethical-
legal support for the privacy-preserving technologies in Section 8.4.

An alternative solution to this challenge is modifying the analysis model from
a mathematical level to eliminate the need of using a third party. In Chapter
5, we investigated a generalized linear model using distributed block coordi-
nate descent to analyze vertically partitioned data without requiring a third
party. We restrict the statistical information shared between data organiza-
tions as much as possible and measure privacy by proving how the shared
information relates to the source data. Our model can be extended to more
data organizations and to handle arbitrarily partitioned data (a hybrid of hor-
izontally and vertically partitioned data). Although the generalized linear
model resolves the restraints of a third party, it is only applicable when the
target features can be shared by all participating organizations, which is not
required by the secure infrastructure in chapter 3-4.

8.2.3 The optimal privacy-preserving technology
The studies in Chapter 2 to Chapter 5 show at the current development stage
of privacy-preserving technologies, there is no single optimal method that
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can fit all data situations in practice, preserve the most sufficient privacy, and
reach the best model performance at the same time. In our opinion, to choose
the most suitable privacy-preserving technology, we recommend data orga-
nizations and researchers collaboratively consider the following items:

1. agree on an overall goal of distributed data analysis such as to answer a
specific research question (from a scientific aspect) and the desired level
of data protection (from a legal-ethical aspect),

2. investigate the data characteristics such as quality and completeness of
data and if participating parties have relevant or linkable data elements,
technical feasibility, and the possibilities and challenges from the legal
domain of each data organization (from a technical perspective),

3. balance the trade-off between the desired privacy level and the accept-
able performance of data analysis (such as if researchers can still answer
the research question based on the analysis result with a certain level of
data protection),

4. consider complexity and cost of computation and communication
and adaptability for future data analysis collaboration to increase the
reusability of the privacy-preserving technology.

8.2.4 Privacy measurement and proof
Our experience in applying theoretical privacy-preserving methods to practi-
cal applications discovers two highlights that are critical but underestimated
in the previous research. First, providing sufficient quantifiable proof of pri-
vacy is key for the data organization(s) to decide whether they are allowed to
and willing to apply such technology. There are privacy aspects that can be
preserved by the technology from multiple perspectives such as law, security
(including cryptography, differential privacy), statistics, and information dis-
closure. For example, in information disclosure, privacy proof has been given
by measuring the probability of predicting the source data using the known
information [9] or if the participation of a certain person can be detected from
the analysis results [10, 11]. Chapter 3, 5, and 6 apply three different ways
to prove and guarantee privacy (from legal, information disclosure, and dif-
ferential privacy angles, respectively) based on different requirements of the
project. In our opinion, the optimal measurement or proof method is the one
that is accepted and understood by the stakeholders and communities who
use or are affected by privacy-preserving technologies. This privacy measure-
ment and proof should align with the legal and organizational requirements
and be agreed upon by the ethical-legal experts in the project.
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8.2.5 Explainability and transparency
The explainability and transparency of privacy-preserving technology play
an important role when applied to the practice. The privacy-preserving
technologies can address the current privacy violation resulting from
sharing source data at a centralized site. However, applying one single
privacy-preserving technology will not solve all the privacy concerns.
These new technologies may create new forms of privacy and data
protection violations from, for example, the log information, error
messages, and intermediate results shared between organizations which
require different corresponding solutions to mitigate the risks of privacy
violation. Additionally, researchers need to ensure the reliability and
integrity of the scientific results from the privacy-preserving technologies
since they do not experiment on the source data directly. Therefore, the
design and development of the technologies should be well-explained
and transparent to the stakeholders. Typically, these technologies consist
of technical specifications, mathematical details, and/or cryptography
protocols that require background knowledge to understand. Therefore,
we encourage researchers and developers in the field to lower the entry
barriers for beginners and people with other backgrounds by providing
clear documentation and technical specifications, explaining background
knowledge, and importantly publishing open-source tools and algorithms
for other researchers and developers to implement and validate the
technologies independently.

8.3 Generation and use of synthetic data
The most privacy-preserving distributed learning infrastructures such as fed-
erated learning [12, 13, 14], Swarm Learning [15] or frameworks using cryp-
tographic technologies share two key concepts 1) keep the source data with
the data owner, 2) execute analysis models at each data organization without
transferring the source data. In this setting, new outstanding challenges are
brought to researchers. The first challenge is to deliver an accurate analysis
model without knowing the quality and insights of the source data. Second,
when the final analysis results are abnormal or out of the expected range, it is
impossible to check the source data to recognize the causes such as abnormal
or unusual data points or errors in the dataset.

We tackled these challenges in Chapter 6 by developing a conditional gen-
erative adversarial network model to generate synthetic data which contains
similar statistical characteristics and correlations between variables to the real
data. Our generative model handles imbalanced data with a mixed type of
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variables and transfers the correlations between variables from real to syn-
thetic data. We prove the similar performance of machine learning models
on synthetic and real data. Researchers can build and improve their analysis
models using the synthetic data and execute the model on the real data. The
synthetic data can provide researchers an insight into the data before they
start the lengthy data request process. However, we highlight that the use
of synthetic data is not to fully replace the real data. Although the analysis
results on synthetic data can be similar to those on real data, the research
experiments should still be conducted on the real data so that the scientific
discovery is reliable.

8.3.1 Privacy preservation in synthetic data
In Chapter 6, we evaluated the model performance and privacy risk by mea-
suring the identity and attribute disclosure of the synthetic data. Combining
the state-of-the-art differential privacy method, our model guarantees that
no individual records in the source data can be distinguished. We prove that
privacy is preserved in the definition of differential privacy.

As we discussed previously, it is essential to get ethical-legal support such as
a proper legal framework for the privacy-preserving technologies and their
applications. From a legal perspective, synthetic data is regarded as anony-
mous data. As synthetic data is generated from personal data, a legal basis
and an anonymous data assessment are required by GDPR to generate and
use synthetic personal data. One of the strict interpretations of the anony-
mous data assessment states when the data controller does not delete the
source data, and the data controller hands over part of this dataset (for exam-
ple after removing or masking identifiable data), the resulting dataset is still
personal data. Briefly speaking, synthetic data does not completely sidestep
restrictions of legal compliance. Even though no record from the source data
can be identified from the synthetic data, the synthetic data could still be con-
sidered as personal data.

In addition to the research community, the generation and use of synthetic
data have gradually emerged in the industry in the past 5 years. Companies
such as Syntho (https://www.syntho.ai/), Statice (https://www.statice.ai/)
in Europe, Replica Analytics (https://replica-analytics.com/) in Canada, and
Mostly AI (https://mostly.ai/) in US and many more are claiming they gen-
erate realistic and privacy-preserving synthetic data to tackle the data pri-
vacy issues. The growing interest from industry accelerates the transforma-
tion of theoretical methods to practical applications. However, before the
widespread use of synthetic data in practice, some key issues should be care-
fully considered and addressed to prevent potential harmful consequences of
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misuse of synthetic data or re-identification of source data. First, every coun-
try or area has its own legislation for data or personal information protection.
When the generated synthetic data is claimed to be privacy-compliant, the
meaning or definition of privacy is mostly not defined or referred to. Some
EU companies state the generated synthetic data is non-identifiable or im-
possible to re-identify individuals so that the synthetic data is excluded from
GDPR. However, the measurement of privacy or relevant evidence of pri-
vacy preservation is missing to support the privacy-compliant claims. Ad-
ditionally, as we discussed before, if the data controller does not delete the
source data, the synthetic data could be still seen as personal data. Chapter 6
presents some possible attacks that may reveal the source data from identity
disclosure or attribute disclosure with certain probabilities. When the syn-
thetic data is published or disseminated for secondary use, data rights from
the data providers may be violated if individuals’ data are used to generate
synthetic data without sufficient data protection. Therefore, in our opinion,
a sound legal framework is required to supervise the generation and use of
the synthetic personal data in collaboration with technical experts who have
sufficient knowledge of generative models.

8.4 Indispensability of ethical-legal support
In the previous discussion, we have highlighted the impact of legal support
in developing new technologies to protect data privacy, applying existing
methods to practical applications, and generating synthetic personal data.
In Chapter 2, we conclude many existing methods are not able to be imple-
mented in real-life use cases because their technical solutions lack ethical-
legal support. From another perspective, the new privacy-preserving tech-
nologies pose distinct challenges to the current legislative framework [16].
Therefore, we would advocate for the coordination and collaboration across
scientific, technical, and ethical-legal expertise for exploring viable solutions
for privacy-preserving data sharing and analysis in practice.

When implementing the infrastructure and application in Chapter 3 and 4,
we have encountered several challenges which could only be solved through
cooperation between legal and technical experts. For instance, due to the
data protection regulations from one of the data organizations in our project,
the data (including encrypted data, anonymized data, pseudonymized data,
aggregated data, or data in any format) cannot be transferred out of their sys-
tem without a manual information disclosure check by their experts. Any
information that is based on less than a certain number of data subjects is not
allowed to be exported. Based on these regulations, many existing privacy-
preserving technologies cannot be directly applied, such as secure multiparty
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computation or homomorphic encryption. These technologies either require
heavy communications or information exchange on data subject level be-
tween data organizations, which do not comply with the organizational re-
strictions. To address this issue, our ethical-legal experts proposed a legal
framework and established a joint controller agreement between data orga-
nizations to support the trusted secure environment. Only encrypted and
pseudonymized data can be executed in the trusted secure environment and
no data organizations can intervene in the execution by digital signatures of
the executed code.

Furthermore, as we mentioned at the beginning of this section, vertically par-
titioned data must be linked across multiple organizations before the analysis
starts. Unique identifiers, such as national identification numbers or social se-
curity numbers are needed to link data. However, the GDPR leaves it up to
the national governments to determine the use of the national identification
number. The Netherlands has adopted a very restrictive approach regard-
ing the use of the national identification number (Burgerservicenummer -
BSN). As the most reliable identifier, BSN (including encrypted, anonymized,
pseudonymized, or in many other formats) cannot be used for scientific pur-
poses such as the project in Chapter 3 and Chapter 4. To continue the research
and comply with Dutch law, together with our legal experts, we selected a
set of personal features (gender, date of birth, zip code, house number) that
are allowed to use for linking purposes and pseudonymized the combina-
tion of these features. Finally, the data was successfully linked with an ac-
curacy of 97%. The ethical-legal support played a vital role in the success
of implementing the privacy-preserving technology using personal data in a
practical setting. Meanwhile, the accurate data linkage from our work gives
us a necessary reflection on the Dutch legislation on using BSN for scientific
research. Unable to use the BSN (only one data element), researchers need
multiple reliable personal or demographic data to have a relatively accurate
link. These personal or demographic data are often considered to be more
privacy-sensitive than the BSN numbers. Using multiple instead of one data
element does not comply with one of the GDPRs key principles - data min-
imization - which requires data collection to be limited to what is necessary
for its purpose [17]. Therefore, our work shows the use of the BSN number
(in a modified form, e.g. one-way hashing) for scientific research is necessary
and can improve the protection and trust from individuals.

8.5 Privacy-preserving methods and (re)consenting
Combining and analyzing personal data through various sources may lead
to privacy and data protection breaches. However, the algorithm and analy-
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ses themselves are not designed to harm individuals. Instead, individual data
rights are violated by how these analyses are being executed during the differ-
ent phases of data science without a legal basis and without complying with
the data protection laws. Under GDPR, consent is one of the most common
legal bases to process personal data. Therefore, the overall aim of developing
and applying privacy-preserving technologies is to protect individuals pri-
vacy and data rights. Using these privacy-preserving technologies does not
dismiss researchers from individuals giving (re-)consent. This is important
for researchers and developers who develop privacy-preserving technologies
to acknowledge and for data organizations to understand.

The GDPR requires that consent must be informed and freely given and can
be withdrawn at any time. Giving and withdrawing informed consent for
data collection and analysis faces practical challenges such as the way in
which consent is obtained is insufficient for the posed research question, the
consent is not fully informed (e.g., without background information about
the research), or freely given by the individuals. We address the challenge of
facilitating individuals to fully exercise their data rights such as giving digital
consent to health research by developing a citizen-centric data platform.

TIDAL connects individuals with researchers and provides them a simple
way to give or withdraw their consent for donating personal data for health
research. In our opinion, the value of data does not lie in its collection and
storage, but in the data flow and (re-)use of data. Therefore, TIDAL enables
individuals to monitor and control the whole life cycle of their data includ-
ing the access, storage, and analysis of data. Personal data management tools
such as TIDAL are promising starts of building a completely new paradigm
of personal data storage and (re-)use. Data stewardship, access control, and
the responsibilities of managing data can be shifted from organizations to in-
dividuals. In this promising future, the new data paradigm may bring new
challenges such as how we educate the general public to manage their own
data, and how we ensure the majority of our citizens understand the conse-
quences of giving access?

8.6 Citizen control over their data
We envision in the future citizens will have real-time data access and more
control over their own data and make decisions on who can access, store,
and process data that are generated and directly based on these individu-
als. Individuals can easily store or move their data between personal data
storage providers or using their self-hosted data storage. Ideally, these data
are generated and stored in a human- and machine-readable format and are
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structured by well-established data standards. Hence, these personal data are
interoperable and can be shared and (re-)used by broader applications.

To shape this future, a joint effort is needed from technology developers,
ethical-legal experts, policymakers, data organizations (who are collecting or
storing personal data), and the general public. New technologies should be
developed and applied to implement data protection regulations and facili-
tate our citizens to practice their rights in a collaboration between technology
developers and ethical-legal experts by, for example, having dialogues to ob-
tain a common understanding across domains and find out what is possible
from an ethical-legal and technical perspective. When introducing such a
new personal data platform to society, we expect new challenges and discus-
sions to be brought from the general public, data organizations, and other
stakeholders of our society. Policymakers and regulators may need to con-
ceptualize the corresponding legislation and regulations in response to these
challenges and discussions about the new personal data use paradigm. Fur-
thermore, the general public should be provided with sufficient guidance and
education to be able to make their own decisions on the access and use of
their personal data and understand the benefits and consequences of those
decisions. In our opinion, this is not the only optimal strategy for using per-
sonal data in the future, but this thesis pictured a potential solution. It is up
to society and/or individuals to decide on the preferable way to manage and
use their personal data.

8.7 Future perspectives
From the current development of privacy-preserving federated learning in-
frastructures that share and analyze personal data across multiple organiza-
tions, one of the crucial challenges is data quality and interoperability from
different organizations. The case studies from the existing infrastructures are
usually in a controlled context such as limited data requirements, basic data
models, or simplified legal or organizational restrictions. Data quality and
interoperability have not been well-studied as big challenges in a federated
learning scenario. In our opinion, data quality and interoperability have a
significant impact on the utility of the infrastructure and the performance of
the analysis results. We applied FAIR guiding principles in the infrastructure
to enhance data interoperability (Chapter 3). Future work is needed to auto-
mate the process of making data FAIR, and recognize and select the proper
data standards at the source.

Furthermore, the trade-off between privacy preservation and data utility is
a key to selecting the most suitable privacy-preserving technique in different
use case scenarios (Chapter 5-6). However, finding the optimal balance of this
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trade-off in each particular use case depends on the different legal constraints
and the purposes or use of the data. Therefore, future work should extend the
current studies (Chapter 3, 5, 6) to adjustable approaches that users can cus-
tomize this trade-off between privacy and data utility based on their scientific
goal, legal restrictions, and technical requirements.

Finally, we envision the future of storage, use, and sharing of personal data
will be shifted from a centralized system to a decentralized network. More
personal data will be generated by citizens’ smart objects, such as wearable
devices, home appliances, manufacturing robots, and computing facilities
close to citizens [18]. These data will be in the control of the citizens. The
personal data management tool - TIDAL (Chapter 7) - has demonstrated the
possibility of storing, controlling, and analyzing individual data in a decen-
tralized network using SOLID. More work will be done to systematically fill
the pods with existing data from its current locations (e.g., data organizations)
and store new data from its source (e.g., wearable devices) in compliance with
FAIR principles. Ideally, we can make these personal data FAIR directly in cit-
izens’ data pods. Not only does it enable citizens to control their own data,
but it also increases the availability and utility of personal data for research
and keeps the free flow of data across organizations and across borders.
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Summary

An ever-increasing amount of data is generated by our citizens and used in
our daily life every single day. These massive amounts of data can be used to
improve digital technologies and develop data-driven innovations that can
impact every aspect of peoples lives. However, lack of sharing, accessing
to and reusing from multiple organizations hinders the analysis possibilities
and hence potential insights from the data. A number of challenges have been
recognized such as technical barriers, security, data protection compliance
to one or more legal jurisdictions, privacy concerns, and trust issues. The
overall aim of this thesis is to develop new privacy-preserving data sharing
and analysis techniques that strengthen and extend the (re-)use of personal
data while maximally protecting individuals privacy. To achieve this aim,
this thesis addressed the research challenges on personal data sharing and
use from the perspectives of data organizations, the research community, and
individuals (data providers).

This thesis first presents a systematic literature review (Chapter 2) on privacy-
preserving distributed data mining (PPDDM) techniques which considers the
issue of executing data mining algorithms on private, sensitive, and/or con-
fidential data from multiple data organizations while maintaining privacy.
This chapter draws an overview of existing PPDDM methods to help re-
searchers better understand the development of this domain and assist prac-
titioners to select suitable solutions for their practical cases. We discussed
the highlights and remaining challenges in the field including a lack of stan-
dard evaluation criteria for new PPDDM techniques, the ambiguous defini-
tion of privacy, and the gap between theoretical solutions and practical appli-
cations. Finally, we provided a list of recommendations for future research in
the field.

Chapter 3 presents an innovative infrastructure, which supports secure and
privacy-preserving analysis of personal health data from multiple indepen-
dent organizations with different governance policies. Instead of centraliz-
ing the data, the infrastructure enables researchers to send data-processing
applications to each involved data organization. This chapter describes an
optimal solution accounting for scientific, technical, and ethical/legal chal-
lenges in a practical use case. Chapter 4 proves the feasibility of the proposed
privacy-preserving infrastructure using real-life patient data from The Maas-
tricht Study and Statistics Netherlands to study the association between Type
2 Diabetes and annual healthcare expenses. We handled challenges that have
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not been adequately studied by previous works such as data linkage in ver-
tically partitioned data, privacy definition and measurement corresponding
to technical and legal requirements, and the indispensability of ethical-legal
support in the development of new privacy-preserving technology. Based
on the work in Chapter 3-4, Chapter 5 solves the limitations of using a third
party and decreases the costs of communication and computation. The pro-
posed privacy-preserving generalized linear model is based on a distributed
block coordinate descent algorithm to obtain parameter estimates, and ap-
pended an extension to compute accurate standard errors without additional
communication cost. We critically evaluate the information transfer of our
model and prove the security and privacy against data reconstruction.

The motivation of Chapter 6 comes from the experience of requesting data
and building up a data analysis model without accessing the source data us-
ing the privacy-preserving infrastructure. Chapter 6 presents DP-CGANS,
a conditional GAN model combining differential privacy to generate realis-
tic and privacy-preserving synthetic tabular data that is structurally and sta-
tistically similar to the real data. DP-CGANS tackles two outstanding chal-
lenges in generating synthetic (tabular) data - 1) capturing the correlations
and dependencies between variables in an imbalanced dataset, 2) addressing
privacy concerns when training DP-CGANS on sensitive private data using
a differential privacy technique. We extensively evaluate DP-CGANS com-
pared with three other state-of-the-art generative models. We demonstrate
that DP-CGANS outperforms other comparable models and shows the trade-
off between data utility and privacy in synthetic data generation.

The focus of Chapter 7 lies on a citizen-centric data platform (TIDAL) which
can give individuals ownership of their own data, and includes mechanisms
to provide fine-grained access to external parties. Combined with the previ-
ous development, the TIDAL integrates a set of components for requesting
subsets of RDF (Resource Description Framework) data stored in personal
data vaults based on SOcial LInked Data (SOLID) technology and analyz-
ing them in a privacy-preserving infrastructure. We demonstrate the feasi-
bility and efficiency of the TIDAL platform by querying and analyzing per-
sonal health data from an increasing number of data pods and variables. This
chapter shows platforms such as TIDAL play an increasingly important role
to connect citizens, researchers, and data organizations to increase the trust
placed by citizens in the processing of their personal data.

Chapter 8 describes the scientific challenges addressed by this thesis in apply-
ing theoretical privacy-preserving distributed data mining methods to practi-
cal applications such as the data linkage across sources, trusted party in real-
ity, privacy measurement, optimal choice of privacy-preserving methods, and
explainability and transparency of the methods. This chapter highlights the
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generation and use of synthetic data that needs support from a sound legal
framework, followed by a discussion on the importance of interdisciplinary
collaborations between technical and ethical-legal experts in developing new
privacy-preserving technologies. Last but not least, we envision a new per-
sonal data paradigm for citizens to take more control over their data access
and how their data is processed. We believe the future personal data use and
sharing will be in a fully decentralized network. The changes from now to
the future require efforts from all the stakeholders such as individuals (data
providers), policymakers, researchers and scientists, data organizations, and
our society.
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Samenvatting

Data wordt continue gegenereerd door de mens, en gebruikt in het dagelijks
leven. Deze stroom aan data blijft groeien, en kan worden gebruikt voor het
ontwikkelen en verbeteren van data-gedreven digitale technieken en die het
dagelijks leven kunnen benvloeden. Helaas leidt het niet delen van (of toe-
gang geven tot) persoonlijke data vanuit meerdere organisaties tot een groot
obstakel in het analyseren en ontwikkelen van deze digitale technieken. Hi-
erbij zijn een aantal obstakels bekend, zoals technisch, beveiliging, gegevens-
bescherming binnen verschillende wetgevingen, zorgen rondom privacy, en
vertrouwen in verschillende belanghebbenden.

Het doel van deze thesis is om nieuwe privacy-beschermende data-deel en
analyse technieken te ontwikkelen, en op deze manier het data delen (of
beschikbaar stellen) te bevorderen waarbij de privacy van het individu zo
goed mogelijk wordt beschermd. Om dit doel te bereiken worden een aantal
onderzoeksvraagstukken geadresseerd aangaande persoonlijke data deling
en hergebruik vanuit hieronder benoemde perspectieven:

1. Data verzamelende organisaties: het ontwikkelen van een veilige in-
frastructuur voor het combineren en analyseren van data uit meerdere
bronnen, zonder het openbaren van gevoelige persoonlijke informatie

2. Onderzoekers:

• Het ontwikkelen en toepassen van privacy-beschermende gedis-
tribueerde data analyse methoden voor verticaal gepartitioneerde
data, met en zonder gebruik van een onafhankelijke derde partij

• Het bouwen van een synthetische data generator voor het
simuleren van persoonlijke data, zodat onderzoekers inzichten op
simulatie data kunnen ontwikkelen, voordat een data aanvraag
procedure nodig is. Hierdoor kan het analyse model gebouwd
worden voordat de brondata beschikbaar is, waardoor de
doorlooptijd van een project wordt verkort.

3. Voor het individu: het ontwerpen van een nieuwe technologie, waarbij
het individu controle heeft en zelf toestemming en toegang kan geven
voor het (her-)gebruik van hun eigen data.

In deze thesis wordt allereerst een systematisch literatuur onderzoek
(Hoofdstuk 2) uitgevoerd, met als doel het in kaart brengen van
privacy-beschermende gedistribueerde data mining technieken (PPDDM)
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waarbij een analyse tussen meerdere data-organisaties wordt uitgevoerd,
terwijl de privacy van deelnemers zo goed mogelijk wordt gewaarborgd.

Dit hoofdstuk beschrijft een overzicht van bestaande PPDDM methoden om
inzicht te krijgen in de huidige status van het onderwerp, en om onderzoek-
ers te helpen een keuze te maken in methoden, passend bij de (onderzoeks-
)vraag die wordt gesteld. Verder beschrijft dit hoofdstuk de hoogtepunten en
openstaande uitdagingen in het veld, inclusief de afwezigheid van evaluatie
criteria voor nieuwe PPDDM technieken. De onduidelijke definitie van pri-
vacy, en het gat tussen theoretische oplossingen en praktische toepassingen
zijn hierbij de grootste uitdagingen. Dit hoofdstuk eindigt met een lijst van
aanbevelingen voor toekomstig onderzoek in dit veld.

Hoofdstuk 3 beschrijft een innovatieve infrastructuur, waarbij veilige
en privacy-beschermende maatregelen centraal staan. Hierbij wordt de
casus van persoonlijke gezondheidsdata uit meerdere (onafhankelijke)
bronnen/organisaties met verschillend beleid besproken. De infrastructuur
biedt de mogelijkheid om data bij de bron (de organisatie) te laten staan, en
data-analyse algoritmen te versturen naar de betrokken organisaties. In deze
oplossing komen wetenschap, techniek en ethisch-juridische uitdagingen
in een praktische casus bij elkaar. Hoofdstuk 4 sluit hierbij aan, en laat de
daadwerkelijke uitwerking van deze infrastructuur zien, waarbij data van
de Maastricht Studie en het Centraal Bureau voor de Statistiek (CBS) wordt
geanalyseerd voor het onderzoeken van de relatie tussen Diabetes type 2 en
gezondheidszorg uitgaven. Uitdagingen die voorheen niet specifiek zijn
geadresseerd, zoals het linken van persoonlijke informatie over meerdere
bronnen, de definitie van privacy en tests aangaande de technische en
juridische vereisten, worden in dit onderzoek geadresseerd. Gebaseerd op
hoofdstukken 3 en 4 beschrijft Hoofdstuk 5 een oplossing waarbij geen
onafhankelijke derde partij meer nodig is, en waarbij de de benodigde
communicatie en rekenkracht wordt verminderd. Het voorgestelde
algoritme is gebaseerd op een gedistribueerde block coordinate descent
algoritme om schattingen voor parameters te verkrijgen. Hierop is een
uitbreiding gemaakt om de standaardfout nauwkeurig te berekenen zonder
extra communicatie. Deze methode is kritische gevalueerd met betrekking
tot de informatie uitwisseling om beveiliging en privacy te waarborgen, en
om brondata reconstructie te voorkomen.

Hoofdstuk 6 bouwt voort op de ervaring rondom het aanvragen van data,
en de bijbehorende analyses, zonder de daadwerkelijke data zelf te kunnen
benaderen. Hierbij wordt DP-CGANS beschreven: een conditioneel gener-
ative adversarial network (GAN), gecombineerd met differentiele privacy,
voor het genereren van realistische en privacy-beschermende synthetische
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tabel data. Deze synthetische data is zowel in structuur en statistisch vergeli-
jkbaar met de daadwerkelijke data. Deze methode is getest in vergelijking
met drie andere moderne generatieve modellen. Hierbij laten we zien dat
het voorgestelde model beter werkt dan de bestaande modellen, en laat de
afweging tussen bruikbaarheid van data en privacy in synthetisch data gener-
eren zien.

Hoofdstuk 7 beschrijft een burgergericht data platform (TIDAL) waarbij het
individu het eigenaarschap krijgt over zijn/haar eigen data. Hierbij worden
ook mechanismen voor fijnmazige toegang door derden beschreven. TIDAL
bouwt voort op voorgaande ontwikkelingen rondom het beschrijven van
data (subsets) in het Resource Description Framwork (RDF) formaat, en het
opslaan in het SoOcial LInked Data (SOLID) platform, waarbij de analyse
met een privacy-beschermende infrastructuur plaatsvinden. In dit hoofdstuk
laten we de haalbaarheid en efficintie van het TIDAL platform zien, door
middel van het bevragen en analyseren van persoonlijke gezondheidsdata in
een toenemend aantal data pods (lees: een persoonsgebonden datakluis) en
gegevens per pod.

Hoofdstuk 8 beschrijft de discussie rondom de wetenschappelijke
uitdagingen die in deze thesis aan bod zijn gekomen. Van het toepassen
van theoretische privacy-beschermende gedistribueerde data analyse
methoden, tot aan de praktische uitvoering zoals het linken van informatie
over meerdere bronnen, vertrouwde derde partijen in de praktijk, privacy
toetsing, optimale keuzes van privacy-beschermende methoden, en de
verklaarbaarheid en transparantie van deze methoden. Dit hoofdstuk
beschrijft de noodzaak voor het genereren en gebruik van synthetische
data. Verder wordt ingegaan op de noodzaak van een duidelijk juridisch
framework, gevolgd met een discussie rondom de necessiteit van
interdisciplinaire samenwerkingen tussen technisch en ethisch-juridische
experts in de ontwikkeling van nieuwe privacy-beschermende technieken.
Verder gaan we in op een mogelijk toekomst-scenario, waarbij het individu
meer controle kan nemen over data die (over hen wordt) verzameld, wie
hier toegang tot heeft, en wie deze mag verwerken.
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Impact Paragraph

Digital technologies have advanced rapidly and applied broadly in our soci-
ety and affect everyone’s life. By using digital technologies, our citizens gen-
erate a massive amount of personal data every single day. These distributed
personal data are collected and used to improve digital technologies and en-
hance data-driven innovations. The potential values and benefits of sharing
and (re-)use of distributed personal data in a responsible manner are signif-
icant for our society and the scientific community. However, these data are
collected and maintained by different independent organizations. Sharing
personal data across multiple organizations faces challenges from technical
barriers, security and privacy concerns, legal restrictions, and trust issues.
Moreover, citizens, whose data have been collected and used, highly value
their data rights and privacy. However, our citizens currently have very lim-
ited control over their own data. Technical tools and standards are lacking
to facilitate citizens to make their own decision for their data and shift data
control from the data organizations to individual data providers.

The overall goal of this thesis is to develop new privacy-preserving data shar-
ing and analysis techniques so as to enable new possibilities for (re-)use of
personal data while maximally protecting individual privacy. To achieve this,
this thesis makes contributions of interest to three key stakeholders:

1. Data organizations: we developed a secure infrastructure that can com-
bine and analyze personal data from multiple sources without revealing
sensitive private information.

2. Scientific community: 1) we developed and applied privacy-preserving
distributed data mining methods to analyze vertically partitioned data
with and without a third party; 2) built a synthetic data generator to
simulate the personal data so that researchers can have an insight into
data before the lengthy data request process or build-up analysis model
without accessing the source data.

3. Individuals: we designed a novel citizen-controlled technology that en-
ables individuals to access and control their personal data and monitor
the (re)use of their data.
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Impact Paragraph

1 Scientific Impact
The highlighted scientific contribution of this thesis is creating and experi-
menting new data paradigms for sharing and using personal data with re-
spect to privacy from the organizational to the individual levels. Among
data organizations, we proposed a new infrastructure to transfer the anal-
ysis models to vertically partitioned data. It is a scalable and secure solution
to analyze personal data across multiple sources. Significantly, it unlocks re-
search questions that could not be answered before due to the restrictions on
data access and privacy concerns. Unlike other theoretical methods, our in-
frastructure has been successfully implemented and tested in practice using a
large size of real-life data with the support of an ethical-legal framework. We
demonstrated the feasibility of our infrastructure by studying the association
between diabetes and annual healthcare costs from a Dutch cohort.

The second new data paradigm presented in this thesis is for researchers to
use synthetic data to design accurate analysis algorithms without accessing
the source data. Our generative model (DP-CGANS) creates realistic and
privacy-preserving synthetic tabular data that are structurally and statisti-
cally similar to the source data. DP-CGANS tackles two remaining scien-
tific challenges in generating synthetic (tabular) data - 1) capturing the cor-
relations and dependencies between variables in an imbalanced dataset, 2)
addressing privacy concerns when training on sensitive private data using
a differential privacy technique. We prove DP-CGANS outperforms other
state-of-the-art generative models in extensive experiments.

Another innovation lies in the TIDAL citizen-centric data platform, which
makes it easier for individuals to store and access their personal data using
personal data vault technologies and provide direct consent to health-related
research using SOLID (SOcial LInked Data) and Personal Health Train archi-
tecture. TIDAL integrates vocabulary services and standards to 1) structure
digital consents to meet the requirements of GDPR and 2) address a scientific
challenge in improving the interoperability of personal data use. We believe
TIDAL is a start to shift the control and use of personal data from a central-
ized system to a decentralized network.

The datasets, experiments, algorithms, and intermediate and final results in
this thesis are all uploaded to public data or code repositories with descrip-
tive documentation following FAIR principles (Findable, Accessible, Inter-
operable, Reusable). The accessible links to these materials are provided in
each chapter. The manuscripts in this thesis are or will be published in open-
access scientific journals or conference proceedings. The FAIR data, open-
source code, and open-access manuscripts ensure the works in this thesis are
reproducible for other researchers.
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2 Social Impact
Advancing privacy-preserving data sharing and analysis techniques is a key
to achieving responsible use of personal data. The privacy-preserving in-
frastructure that we developed to securely share data between organizations
uncovers more potential use of personal data to improve public and social
services, deliver timely healthcare treatments, and other potential benefits to
society. This infrastructure protects individual data rights and privacy, which
may increase confidence and trust from the data providers (e.g., citizens) in
data organizations and how their data is being used by and between organi-
zations.

The generation and use of synthetic data uncover the possibility of mining
the value of the data even when the data are inaccessible or unavailable. Like
the digital twin can accurately reflect a physical object and simulate its life cy-
cle, our synthetic data generator can generate realistic synthetic personal data
that can be used to build and test the analysis models as a replacement for real
data. We found that the higher the quality of synthetic data we generate, the
more data privacy is sacrificed. This may accelerate research projects which
suffer from data access issues. However, it opens new challenges and discus-
sions to the public and our society on the proper generation and responsible
use of synthetic personal data.

The citizen-centric data platform (TIDAL) gives individual citizens
fine-grained access to their personal data and provides digital consent to use
their data for health research. Citizens can monitor and control the whole
life cycle of their data including the access, storage, and analysis. TIDAL
connects citizens, researchers, and data organizations and facilitates citizens
to contribute to health research in a simple way that will improve our society.
TIDAL shifts data stewardship and access control from organizations
to individuals and encourages citizens to take more responsibility for
managing their own data. We believe that TIDAL can start a completely new
personal data paradigm that can gain more trust placed by citizens and the
transparency of the processing of personal data.
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